کانی شناسی و سنگ‌زایی اسکارن آهن چالو (جنوب شرق دامغان)

مريم شیبی

دانشکده علم زمین دانشگاه صنعتی شهروود، شهروود

(دریافت مقاله: 94/7/21، نسخه نهایی: 94/7/30)

چکیده: اسکارن آهن چالو در محلی محسوس با سنگ‌های آهکی کرتانسه و با خشکی از توده‌های نفودی با ترکیب مونوژوبوریت به وجود آمده است. درون اسکارن در یک گستردگی باریک مشاهده شده و دارای گران فنی از اندرادیت (Ad₃₀Gr₃₀Sp₃₀) و کلیپوریکس است. بیرون اسکارن کلسیمی دور از محل همبری تازه منطقه‌بندی و شکل‌گیری کالسیکوس بیشتر دیده و از پیشنهاد و کارتنین در ورودی گاز H₂O و CO₂ به محل را همگام با کاهش مدا و گروونید در این محل مختلف تشکیل اسکارن نشان می‌دهد. کانی زایی کمیسیوی و سولفوئید درون‌زاد بیشتر از همانی صفه‌های (اسبیولوکسیت، مینیتیت توان با فلایت کمتر پریت، کالکوپریت تشکیل یافته و کالنهای برونزاد مالاکیت، آزوریت، اکسبیدا و هیدروکسیدهای آهک را شامل می‌شود.

واژه‌های کلیدی: اسکارن آهن، کرتنسه، ووژوبوریت، مرمور، دامغان

مقدمه

قودی گرانیتی‌نیتری در جنوب شرق دامغان و در کویر جنگل رهمنون واقع و بخش کوچکی از نوار آتش‌فانی نفوذی در توده‌های توده‌های نفودی با ترکیب مونوژوبوریت به ویدن سنگ‌های آهکی کرتانسه نفوذ کرده و اسکارن آهن چالو را به وجود آورده است (شکل 1). ذخیره‌های مزارور به شکل نسبی تارک‌های جدال‌گاه‌های از هم‌سنتی و مشابه به همراه مقدار اندکی مس در راستای پیک گسل شمال غربی - جنوب شرقی و در کنار توده‌های نفوذی تشکیل شده است. سرنشین‌های سنگ‌گرایی و زنگ‌سفیدی سنگ‌های آهک و بافت‌های آهکی جالو مورد بررسی قرار گرفته است. (1) کنار سازی ای بر ترمال فلزات یا به وگان‌ها در میانجی‌های در میانجی‌های، نشسته مسول، تلفن: 021-37116875، تاریخ: 01/05/99.

*sheibi@shahroodut.ac.ir
زمن شناسی منطقه قدیمی‌ترین سنگ‌های گستردگی معمولاً چالو را آهن‌های ضخیم سفید‌الی به‌شکل می‌دهد که سنگ‌های بلندی را در غرب منطقه مورد بررسی نبوده‌اند. این واحد از آهن‌های مارنی زرد رنگ تا ناحیه شیپ‌های خاکستری، با لایه‌های نازک تا متوازن تشکیل شده که رنگ متنوع‌تر تازه کردن باشد. هر دوی آهن‌های نزدیک به یکدیگر کامل را یک‌اهنی گام‌های زرد شیپ‌های خاکستری می‌پرونی که باعث درست‌گرداندن از اسرار آهن‌های ضخیم خاکستری است. روی شیپ‌های سیلیکانی از آهن‌های خاکستری رنگ تازه‌تر نیست که به‌طور قابل‌توجهی به‌دست آمد. ریشکری‌های بلند را از آهن‌های نسبتاً ضخیم به‌سوی مقطع سه‌درجه که در سطح‌های معمولاً به رنگ خاکستری تیره است، قرار می‌گیرد [7]. قسمت‌هایی از سنگ‌های سنگ‌های معمولاً به زمان انسن نسبت داده شده است و بیشتری از نوع آندزیت تراکی‌اندزیت و آلزیست. توده‌های کوچکی از سنگ‌های نفوذی نیمه عمیق با ترکیب غلب دیورتیت، که توده‌های مور بررسی در این پژوهش (توده‌ی گرامینودی) چالو نیز بخشی از آن‌هاست، این مجموعه آتش‌نشانی‌ها را قطع می‌کنند. واحد آهن‌های ضخیم در رستاها همبهری با

شکل 1 ف: منطقه‌های شخصی اصلی در نقشه زمین‌شناسی ایران (تفیفی از [5]. نقشه زمین‌شناسی گستردگی ذخیره‌های آهن چالو منطقه‌بندی اسکارن بر اساس نمونه‌های برداشت شده در صورا، بریسی‌های سیگنالاری و شیمی کانی به‌دست آمده است.

توجه نفوذی تحت تأثیر درگونگی گرمایی و درگونه‌داده قرار

گرفته و اثر آن تا فواصل دورتر دیده می‌شوند.

روش پژوهش

پس از جمع‌آوری اطلاعات پیشین، به منظور بررسی‌های زمین‌شناسی، کل گستردگی معمولاً چالو مورد پیام‌بری صحرا باید قرار گرفته و بر اساس یک نمونه بودن منظم، از نمونه‌های سالم و دگرگان شده توده نفوذی سنگ‌های خروسیسی‌های شهره و هم‌اکنون معمولاً دربست شده. بیش از 20 مقطع نازک و 20 مقطع نازک صرفی از واحد نفوذی سنگ‌های رسوبی میزبان و شیمیایی تهیه و از قسمت‌های مشخص‌کرده گونه‌ها در اسکارن Cameca, از رزین‌برداری و شیمیایی داده‌های موجود در مرکز تحقیقات و فناوری مواد معمولاً ایران انجام شده است. در طول این آزمایش‌ها، ولتاژ شدت بخارشده دستگاه 15 کیلو ولت و ولتاژ شدت جریان 40 ناش دارد. باریکه 1 تا 5 میکرومتر بوده است. نتایج حاصل، در یک آورده چگونگی تشکیل ذخيره‌های آهن چالو استفاده شد.
نشریه بلورشناسی و کاشی شناسی ایران
مجله بلورشناسی و کاشی شناسی ایران

452

شکل 2 تصادف نمونه دستی و صحرا آی از انواع کاندزایی در ذهن خ. آن جالب، الکت (B) گوترا (Qtz) و كوارتز (Hem) اسپکولایت (Mg) و كوارتز (Hem) همراه با منیتیت (Mic) كلالپیرویت و كلالپیرویت در حفرات (Cal) كلالپیرویت لیموسینی (Mg) و بلورهای کلیست (Cal) در حفرات (T) کاندزایی آهن در راستای لایه بندي توده‌ها کربناتی (Sahlt نواری)

مخفف کاتی از [14].

منیتیت در برخی از مقاطع می‌تواند نشان‌ده که‌که کربنات‌های آهنی در شکل همزمان انها باشند. بلورهای منیتیت نیمه شکل‌دار و پراکنده دانه‌های هستند. گاهی بلورهای منیتیت در قالب بلورهای گارنت تک‌شکل شده و بافتن جانشینی (برجاپایه) را به نمایش می‌گذارد (شکل 3 ت و ج). کارنايت اصلی همان‌貌 منیتیت این ذخیره در مواردی به‌وسیله رگه‌های سولفیدی (کالکوبیرویت و کمی پیرپیت) و یا رگه و رگجه‌های کوارتز- کربنات‌های نخورده قطع شده‌اند (شکل 2 ب و ت). در برخی مقاطع کالکوبیرویت نیز با همان‌貌 همرشدی داشته و تحت تأثیر فرابنده‌های سطحی از حاشیه به کایه‌های مالاکیت و گوتراپیت دوگرانه شده است (بافت بارزانی، شکل 3 ج و ح). مالاکیت در مقاطع نازک - صیقلی نَه‌گ سری‌می لایه به زرد بوده و دارای بافت‌داری داخی از سبز است. فرابنده‌های سولفیدی و موجو در رگه و رگجه‌ها به‌صورت یک‌جا به‌ماشینی، تک‌شکل شده‌اند.

پهنه بندی اسکار

در ذهن اسکار نه‌گ به‌خیال از توده‌های محدود می‌شوید که به واسطهِ فراوردن دغدغه‌های برخی، کنیه‌های شناسی و بافت‌داری آن تغییر یافته است.

کربنات‌های مشهور به‌خیال کربنات‌های آهنی در شکل‌های خ. آن جالب، الکت (B) گوترا (Qtz) و کوارتز (Hem) اسپکولایت (Mg) و کوارتز (Hem) همراه با منیتیت (Mic) کلالپیرویت و کلالپیرویت در حفرات (Cal) کلالپیرویت لیموسینی (Mg) و بلورهای کلیست (Cal) در حفرات (T) کاندزایی آهن در راستای لایه بندي توده‌ها کربناتی (Sahlt نواری)

مخفف کاتی از [14].

کربنات‌های آهن در جمله مالاکیت و آزنیت بیشتر به‌صورت پرکننده فضاهای خالی در ذهن خ. مشاهده می‌شود. این کاندزایی در بخش‌های سطحی و هوازده ذخیره شده و به‌صورت قشری روی ماده‌های وسیع داردین (شکل 2 آب). لیموفیت، اکسید

اهن آباد به‌خیال زرد مایل به قهوه‌ای است که گالا در بخش‌های سطحی مصنع (برونژ) دیده می‌شود (شکل 2 ب). ساخت و بافت‌نوری در منطقه‌های واقع در جنوب غرب ذخیره، اتصال‌هایی می‌شود. نوارهای باشکوه شامل تناوبی از منیتیت، متقاطع و منسیستون به‌خیال بین 1 تا 2 سانتی‌متر است (شکل 2 آب). رگیدی از کلیست‌که به‌خیال می‌رسد به‌خیال از ب اف و تا به‌خیال تناوبی در منطقه‌ای اجبار شده، معمولاً رگه‌های سلیسی را به‌خیال می‌کند. این رگه‌ها بر خلاف رگه‌های سلیسی قفید کاتی می‌شود.

کاتی می‌شود. در اغلب مقاطع نازک - صیقلی برای سه، بلورهای تیغه‌ای و شعاعی اسپکولایت کانه‌ای اسپکولایت (شکل‌های 3 الف، ب، پ) که به‌صورت انبه‌های شعاعی (دم‌جات‌رویی) از تیغه‌های آهن‌اند هم‌بندی در رنگ خاکستری رنگ در زمینه‌ای از کوارتز و کلیست مشاهده می‌شود. هم‌بندی در این کانه‌ها

[Downloaded from ijcm.ir on 2022-02-04]
شکل ۳ تصاویر میکرووسکوپی از آتوبندهای موجود در ذخیره‌های آهن‌آلول (کلناری) همانند (Hem) با صورت پلورهای صفحه‌ای (XPL) فرم‌دار بوده که در این تصویر دو مینیت و همانیت همراه دارند (نور پارتاپی). تولید شده (نور پارتاپی) از فرم‌دار بوده که در این تصویر بلور کالکوپیریت (کالکوپیریت) به رنگ خاکستری روشی. در این تصویر بوده که با منیت جایگزین شده است (تور پارتاپی).
مجله بوروناگانی و کانی شناسی ایران

مریم شیبی

کاگی های گارتس (30 درصد)، وزوپوئینتی به شکل برای رنگ‌داری تداخلی غیرعادی (25 درصد) و کلیستین (10 درصد) تشکیل شده است. پروتئین (5 درصد) به صورت برو پس یا مجزا (که در وسایل تهیه شده از گاز کنینگ) در کوکچ و با فروشگاه‌های این دسته جوامع می‌تواند در عناوین از کاگی رز مشاهده شود. نکاتی مانند: برش گمانه‌وازی، کلیستین و کلیستین که فراورده‌های درگیر در تغییرات هستند، همراه می‌شود. به واسطه‌ای ناشی از گروه‌های تغییرات توسط همکاران به شکل بالقوه‌ای، همکاری‌ها و بافت‌ها از زیر فهرسه‌های این دسته کاگی مشاهده شده است.

در نتیجه، در حالی که کاگی های گارتس در بسیاری از روشهای تشخیصی استفاده می‌شود، این روش‌ها به‌طور کلی در زمان‌های غیرعادی استفاده می‌شوند. برش گمانه‌وازی، کلیستین و کلیستین که فراورده‌های درگیر در تغییرات هستند، همراه می‌شود. به واسطه‌ای ناشی از گروه‌های تغییرات توسط همکاران به شکل بالقوه‌ای، همکاری‌ها و بافت‌ها از زیر فهرسه‌های این دسته کاگی مشاهده شده است.

در نتیجه، در حالی که کاگی های گارتس در بسیاری از روشهای تشخیصی استفاده می‌شود، این روش‌ها به‌طور کلی در زمان‌های غیرعادی استفاده می‌شوند.
شکل ۴ تاک‌یزی میکروکوپی از کالک سیلیسیتهای موجود در اسکارن اهن جالو این تاک‌یزی بر حسب فاصله از محل همبستگی با تعدادی نفوذی بسیار کوچک و یک‌شکل در میان دانه‌های چند پلی کلورت (نور عبوری، XPL). کلیه‌های موجود در این تاک‌یزی با استفاده از روش تجزیه‌های شناسایی شده‌اند. ب) تاک‌یزی گل در نور عبوری (PPL، XPL،) و ماده‌ای شیمیایی ثابت که در این تاک‌یزی نگهداری شده در این تاک‌یزی پیکرکس (PPL، XPL) استفاده از یک کیه‌های تیره به راحتی قابل تشخیص کرده‌اند (نور عبوری، XPL). تاک‌یزی ب در نور عبوری (PPL، XPL،) و نیز تاک‌یزی د (ج) تاک‌یزی در نور عبوری (PPL، XPL،) نیز از گل‌های واکنش و در نور عبوری (PPL، XPL،) تاک‌یزی C در نور عبوری (PPL，XPL)
جدول ۱ نتایج تجزیه شیمی کانی‌های گارتن و وزوپاینت موجود در ذخره آهن جالو

<table>
<thead>
<tr>
<th>Garnet</th>
<th>Proximal Zone</th>
<th>Distal Zone</th>
<th>Endoskarn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample no.</td>
<td>Ch.m.12</td>
<td>Ch.m.5</td>
<td>Ch.m.17</td>
</tr>
<tr>
<td>SiO₂</td>
<td>34.05</td>
<td>34.91</td>
<td>34.65</td>
</tr>
<tr>
<td>TiO₂</td>
<td>6.35</td>
<td>6.39</td>
<td>6.40</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>9.04</td>
<td>9.77</td>
<td>9.80</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>1.00</td>
<td>1.01</td>
<td>1.00</td>
</tr>
<tr>
<td>FeO</td>
<td>15.51</td>
<td>15.74</td>
<td>15.74</td>
</tr>
<tr>
<td>MnO</td>
<td>2.23</td>
<td>2.24</td>
<td>2.25</td>
</tr>
<tr>
<td>MgO</td>
<td>0.84</td>
<td>0.87</td>
<td>0.86</td>
</tr>
<tr>
<td>CaO</td>
<td>14.47</td>
<td>14.77</td>
<td>14.78</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Almandine ۴۴
Spessartine ۴۴
Pyrope ۴۴
Grossular ۴۴
Andradite ۴۴
Uvarovite ۴۴

شکل ۵ نمودار تغییرات درصد اکسیدهای موجود در گارتن (الف) و وزوپاینت (ب) تجزیه شده در آهن جالو. در این دو نمودار محور X معرف شماره نقاط تجزیه شده است. ب) موقفیت ترکیبی گازنتهای تجزیه شده موجود در اسکارن روی نمودار سنتی آندرادیت-گروزالر

(اسپارتمیelin، آلمان). گستره خاکستری موقفیت ترکیبی گازنت در اسکارن‌های آهن جالو (۱۵).
در ترکیب شیمیایی گرانت موجود در برون اسکارن مورد بررسی دارای ترکیب جامد گروسوال-آندرادیت بوده و از $\text{Ca}_3\text{Gr}_3\text{P}_2\text{O}_9$ در بخش‌های بیرونی تا $\text{Ca}_3\text{Gr}_3\text{P}_2\text{O}_9$ در آندراو گروسوال و در حالت دولوپ از $\text{Ca}_3\text{Al}_2\text{Si}_3\text{O}_12$ در بخش‌های داخلی استفاده شده است و تغییر دیدنی ندارد (شکل ۵)...}

$\text{Ca}_3\text{Al}_2\text{Si}_3\text{O}_12 + 3\text{CO}_2$

$\text{Ca}_3\text{Al}_2\text{Si}_3\text{O}_12 + 3\text{CO}_2$
توجه به این بررسی‌ها، علائم تولید
CO_2 آب نیز باید در این
سنگ‌ها نفوذ کرده باشد. در این اسکارن، فشار محیط p به
منظر تکلیف و ژورابینت می‌تواند برای ذوب زیر کاهش فاصله
باشد: 1) نفوذ ذره‌ای پایین سنگ‌های محل تماس; 2) حضور
دره‌ها و شکستگی‌های موجود که مسری عبور شارده‌های
CO_2 اضافی را می‌باشد.
می‌سازند. 3) اختلال شارده‌های گرمایی و برقی بررسی
ریزدستی میانی‌های شارده در دفعه تولیده‌های
امیکتیک و رقیق شدگی شارده کاهن‌زایی تکنیک
ماگمایی-گرمایی و دیگر راه‌های کرده است [2]. برای تولید
عامل آن با ترمیم از نزدیکی عامل می‌توانست ویژگی تصویر
وریزابنی را در مرحله‌های گرمایی اسکارن فراهم آورد. با
توجه به بررسی‌های اندازه‌گیری، دنباله‌ی تکنیک دهانه‌ی
سنگ‌های اسکارن آهن چالو در شکل 6 ترسیم شده است.
گاز شیمی و کلیونی‌آب‌یک در مرحله گرمایی بیشتر و
وریزابنی و دیده‌ای آن‌ها را در دانسته‌گرایی تشکیل
شد. مجموعه‌ی بافت‌های کلسیمی و تیتانیوم است.
شناسایی شده در اسکارن مور بررسی شیب‌های ریزیده به
CO_2 بهبود یافته از اسکارن‌های مس را در نشان می‌دهد.
[29, 28]

برداشت
شواهد محیطی، نمونه‌برداری هم‌نحو، بررسی مقاطع
مگریسوکوپی و نتایج حاصل از شیمی‌کی‌های، نشانگر

<table>
<thead>
<tr>
<th>Mineral</th>
<th>Stage of skarn formation</th>
<th>Supergene alteration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinopyroxene</td>
<td>Prograde</td>
<td></td>
</tr>
<tr>
<td>Garnet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wollastonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vesuvianite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnetite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chalcopyrite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Malachite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Limonite</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goethite</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
قدراتی ان پژوهش حاصل طرح پژوهشی به شماره 20125 است که
با همکاری ملی معاونت پژوهشی و فناوری دانشگاه صنعتی
شاهدوز انجام شده است. همچنین نگارنده از آقایان دکتر
فرsten کانه نگاری و مهندس رضا رضاپوری که به ترتیب در
بررسی کانه نگاری و مهندسی صحرایی انجامد را همراه
کردهاند تشکر و قدردانی می‌کند.

مراجع
[1] تُمی بور ن، قریبی ق، دراپی، م، "زمین‌شناسی، یادگیری و
روش‌های مناسب‌سازی و توجه به آزمون‌های متغیر با ذخیره‌سازی
(جهت بررسی و جامعه اسکارن) مدل زمین‌شناسی کاربردی پیشرفته,
شماره 2، جلد 1 (۱۳۹۱) ص 54-66
[2] مهرابی، فاضل سپاهی، م، طالع فاضل، "بررسی
سامانه کانه‌هایی فزاینگ (پایه‌های مغناطیسی) و مدل‌های
بخش ثابت و جامعه کانه‌بندی، کمیت‌های فزاینگ، مدل
عکس زمین، سال بیست و چهارم، شماره ۹۳ (۱۳۹۶) ص 105-118
[3] شبیسی، م، مهدی ب، سارکار، جایگزینی نود
گرانتینی جالو با استفاده از روش‌هایی مغناطیسی، مدل
عکس زمین، سال بیست و چهارم، شماره ۹۵ (۱۳۹۴) ص ۸۷-۸۵
belt of Iran, new data and interpretation. Tectonophysics 229, 211–238.
episodes in Iran". In: Gupta, H.K., Delany, F.M.
(Eds.), Zagros-Hindu Kush-Himalaya Geodynamic Evolution.
Geodynamics Series, vol. 3. American Geophysical Union,
[6] [پژوهشی، ف.، پژوهشی، ش.، ارزیابی سلات، میلاد،
ساختار، م.، فن‌شناسی، زمین‌شناسی کشور,
منطقه معلمان، انتشارات سازمان زمین‌شناسی کشور (۱۳۸۵)
[7] کیانی، د.، پژوهشی، م.، روسال دکتری: تحلیل دینامیکی
شکستگی‌های شمال منطقه تروید- معلمان، دانشگاه آزاد
اسلامی واحد علوم و تحقیقات تهران (۱۳۸۵)
[8] Gill R., "Igneous rocks and processes a
contact metamorphism on the chemistry of calcareous rocks in The Big Horse Limestone member, Notch peak, Utah", American Mineralogist 73 (1988) 1095–1110.