Mineralogical and geochemical evaluation of fire clay of Kabutarkuh deposit, Gonabod

B. Etemadi, R. Miri

Department of Earth science, Shiraz University, Shiraz, Iran.
E-mail: Etemadi@geology.susc.ac.ir

(received: 17/5/2003, received in revised form: 23/11/2003)

Abstract: Fire clay of the Kabutarkuh deposit, located about 50 km southeast of Gonabad (Khorasan Province), was analyzed for its mineralogical and chemical compositions. Kaolinite, pyrophyllite, quartz, dickite, gypsum, illite and alunite are the dominant minerals, and a minor phase of hematite is also present. Geochemical data show that the whole rock sample is mainly composed of SiO₂, Al₂O₃ and K₂O. Chemical results and petrographical studies give an indication of andesite-latite parent rock, which has been altered under the influence of hydrothermal fluids. The chondrite-normalized rare earth element (REE) patterns show enrichment in the Light REEs. The LREE/HREE ratio of upper layer is higher than the lower ones, which indicates mobility of HREE toward the depth. Generally, REE, trace elements and major elements patterns show evidence of intense alteration and weathering processes related to kaolinization. The high measured values of EC and Low measured values of PH are due to solubility of alunite and gypsum minerals.

Keywords: Kabutarkuh, Mineralogy, Geochemistry, Fire clay.
بررسی کاتی شناسی و زئوشیمیایی کانسار خاک نسوز گیوتراکو گناباد

بیژن اعتمادی، روح ا... میری

پخش علوم زمین دانشگاه شیراز
Etemadi@geology.susc.ac.ir

چکیده: کانسار خاک نسوز گیوتراکو گناباد در ۵۰ کیلومتری جنوب شرق گناباد در استان خراسان قرار گرفته است. بررسی‌های کاتی شناسی و عناصر شیمیایی نشان می‌دهد که کالکتونیت، بریوفیلت، کوارتز، دیکیت، تلوریت، ایلیت و آلیونیت به عنوان کانی‌های اصلی و اکسیده به عنوان کانی فرعی در کانسار حضور دارند. داده‌های زئوشیمیایی نشان می‌دهد که بسیاری از SiO۲ و SiO۴- در عمل‌نامه‌ی تکیه دهنده‌های کانسار و عنصری های مورد اطمینان تشکیل دهنده‌های کانسار و نتایج زئوشیمیایی و بررسی‌های سنگ شناختی نشان می‌دهد که سنگ مادرین کانسار آندزیت-لاتیت است که تحت تأثیر شاره‌های غربی در خراسان شده است. کانسار خاک نسوز گیوتراکو در طبقات بالایی کانسار خیلی LREE/HREE بیشتر از طبقات بالایی کانسار به سرعت تراکم بjuries HREE به وسیله سیاره‌های جوی به سمت اعتمال است. به طور کلی آنالیز گسازی اکسید عناصر زئوشیمیایی در طبقات بالایی کانسار خیلی LREE/HREE بیشتر از طبقات بالایی کانسار به سرعت تراکم Bjuries HREE به وسیله سیاره‌های جوی به سمت اعتمال است. به طور کلی آنالیز گسازی اکسید عناصر زئوشیمیایی در طبقات بالایی کانسار خیلی LREE/HREE بیشتر از طبقات بالایی کانسار به سرعت تراکم Bjuries HREE به وسیله سیاره‌های جوی به سمت اعتمال است. به طور کلی آنالیز گسازی اکسید عناصر زئوشیمیایی در طبقات بالایی کانسار خیلی LREE/HREE بیشتر از طبقات بالایی کانسار به سرعت تراکم Bjuries HREE به وسیله سیاره‌های جوی به سمت اعتمال است. به طور کلی آنالیز گسازی اکسید عناصر زئوشیمیایی در طبقات بالایی کانسار خیلی LREE/HREE بیشتر از طبقات بالایی کانسار به سرعت تراکم Bjuries HREE به وسیله سیاره‌های جوی به سمت اعتمال است. به طور کلی آنالیز گسازی اکسید عناصر زئوشیمیایی در طبقات بالایی کانسار خیلی LREE/HREE بیشتر از طبقات بالایی کانسار به سرعت تراکم Bjuries HREE به وسیله سیاره‌های جوی به سمت اعتمال است. به طور کلی آنالیز گسازی اکسید عناصر زئوشیمیایی در طبقات بالایی کانسار خیلی LREE/HREE بیشتر از طبقات بالایی کانسار به سرعت تراکم Bjuries HREE به وسیله سیاره‌های جوی به سمت اعتمال است. به طور کلی آنالیز گسازی اکسید عناصر زئوشیمیایی در طبقات بالایی کانسار خیلی LREE/HREE بیشتر از طبقات بالایی کانسار به سرعت Tαمک‌های محلول و کاتی‌هایی با حالاتی بالا نظر آلیونیت و زئوشیمیایی در فنک‌های محلول و کاتی‌هایی با حالاتی بالا نظر آلیونیت و زئوشیمیایی.

واژه‌کلیدی: کانسار گیوتراکو، کاتی شناسی، زئوشیمیایی، خاک نسوز.
مقدمه
کانی‌های ریس، از آلومینو سیلیکات‌های ابزار است که بیشتر از Al_2O_3 و SiO_2 و آب تشکیل یافته‌اند. بعضی از این کانی‌ها حاوی مقداری متنوع اه، قلب‌یاب‌ها و قلب‌یاب‌خاک‌ها هستند. کانی‌های ریس در زمین‌های مختلف کاربرد گسترده‌ای دارند. از جمله در صنایع گوناگونی از قبیل کاغذ سازی، سرامیک، دیرگدارها، صنایع رنگ، دارویی، حضرت‌کشا و جذب کننده‌ها، مواد پاک کننده، مواد غذایی، استتیک سازی، تصفیه نفت، نهی سیمان سفید، دندان‌سازی، ساخت کاتالیزور، ناسجی، قالب سازی، مواد آراشی، فیلتر‌ها، نهی و تولید انواع خمیرها، گچ سازی، صنایع الکتریکی، صنایع شیمیایی، جسپه‌های معی و غیره از این مواد استفاده می‌شود [1]. کانسراهای رس می‌تواند در روستاهای جامانده و یا گرمای باشد که هر چه کمترین پیگیمای متفاوتی دارد.

موقعیت جغرافیایی و زمین‌شناسی
کناسر حاک نسو کوچ در موقعیت جغرافیایی ۳۳°۰۰.۲۸ شرق و ۲۷°۰۶.۳۴ شمال در فاصله ۵۰ كیلومتری جنوب شرق گناباد قرار دارد. راه‌های دسترسی به کناسراهای مذکور در شکل ۱ نشان داده شده‌اند. قدمبی‌ترین سازنده‌ی منطقه مربوط به سپاهی است و سازنده‌ی قدیمی‌ترین برون ندارند. فعالیت‌های انتخابی در منطقه به سیاس محدود است و به زوره‌سیک مربوط می‌شود. در بخش‌های شمالی کناسر، توده نفوذی گرانیتی مربوط به آنسن دیده می‌شود که سیگه‌های اطراف را دگرگون کرده است [2].
شکل 1 راه‌های دسترسی به منطقه مورد مطالعه.
در شکل‌های ۲ و ۳ نقشه زمین‌شناسی منطقه مورد مطالعه ارده شده است. جوانه مشاهده می‌شود، کنار خاک نسوز کویر کوه، در بین توده‌های آتش‌شناختی قرار گرفته است. مطالعات سنگ‌شناسی و زیست‌شناسی سیستم گرفته در این مجموعه نشان می‌دهد که این توده‌های آتش‌شناختی از نوع آندریت-لاتیت هستند.

شکل ۲ سنگ‌چینه شناسی کنار کوه کویر کوه.
روش مطالعه

یکی از روش‌های رایج و قابل اعتماد در شناسایی کانی‌های رسی استفاده از پرش پرتو X است. برای تعیین فاز‌های کانی‌های کانسار گیوبتیک کوه، چهار نمونه انتخاب و به روش XRD با دستگاه برای پرش پرتو X از نوع فیلیپس مدل 1 PW3710 بررسی شدند. نتایج حاصل در جدول 1 پرده شدند.

خرائط درآمای سطح بر روی یا سطح درونی در محلول، ترکیب ترکیبی کانی‌های نامیده می‌شود. این ترکیب با شمارش مجموع زمان‌های که در سطح درونی و بیرونی بوسیله درآمای شده و با ایجاد گیری می‌شود در این کار پژوهشی رساندگی الکتریکی مربوط به نمونه‌های کانسار گیوبتیک ترکیب شده. نتایج به‌دست آمده در جدول 2 پرده شدند.

برای تعریف ترکیب شیمیایی این کانسار از روش‌های فلورسنتی پرتو (XRF) برای تعیین ترکیب شیمیایی، برای تعیین درصد اکسید عناصر اصلی و XRF نیز ترکیب شیمیایی، سینتاز گرفت. نتایج به‌دست آمده در جدول 3 پرده شدند. برای تعیین عناصر نادر خاکی از روش فعالسازی نوترُنی استفاده شد. نتایج به‌دست آمده را در جدول 4 پرده شدند.

نمونه‌های انتخابی ۹۸ درصد کانسار اصلی این کانسار اکسید عناصر اصلی این کانسار بکار می‌رفتند.

جدول ۱ ترکیب کانی‌های شناسایی کانسار خاک نوز کیوبتیک (به صورت درصد)

<table>
<thead>
<tr>
<th>مجموع</th>
<th>آلوئیت</th>
<th>پیپفیلت</th>
<th>دیکیت</th>
<th>نیز کورانت</th>
<th>ایلیت</th>
<th>کانولیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵۳.۸</td>
<td>۵۴.۶</td>
<td>۵۴.۶</td>
<td>۵۴.۶</td>
<td>۵۴.۶</td>
<td>۵۴.۶</td>
<td>۵۴.۶</td>
</tr>
</tbody>
</table>
جدول ۲ ترکیب شیمیایی کانسار خاک نسوز کیوتارکوه

<table>
<thead>
<tr>
<th>Sample number</th>
<th>PH</th>
<th>CEC meq/100g</th>
<th>EC μs/cm</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲۰</td>
<td>۴.۸۷</td>
<td>۱.۸۸</td>
<td>۸۷۵۵</td>
</tr>
<tr>
<td>۱۱۰</td>
<td>۳.۸</td>
<td>۹.۷۸</td>
<td>۶۹۸۲</td>
</tr>
<tr>
<td>K2</td>
<td>۳.۳۲</td>
<td>۱۰.۸۷</td>
<td>۳۳۵۴.۸</td>
</tr>
<tr>
<td>K3</td>
<td>۷.۴</td>
<td>۸.۷۹</td>
<td>۷۳۸۴.۳</td>
</tr>
<tr>
<td>K4</td>
<td>۵.۱</td>
<td>۳.۱۲</td>
<td>-</td>
</tr>
<tr>
<td>K1</td>
<td>۳.۹</td>
<td>۹.۷۴</td>
<td>-</td>
</tr>
</tbody>
</table>

جدول ۳ ترکیب شیمیایی کانسار خاک نسوز کیوتارکوه

عناصر اصلی بر حسب درصد و عناصر کمیاب بر حسب PPM

<table>
<thead>
<tr>
<th>Sample</th>
<th>K3</th>
<th>K11</th>
<th>K12</th>
<th>K10</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۶۲.۲۴</td>
<td>۶۰.۴۳</td>
<td>۶۱.۱۷</td>
<td>۶۳.۶۲</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۱۴۴</td>
<td>۱۰۲.۹۶</td>
<td>۹۵.۳۴</td>
<td>۵۹.۱</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۳۹.۳۶</td>
<td>۲۴.۷۹</td>
<td>۱۹.۲۵</td>
<td>۱۸.۷۴</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۳.۷۴</td>
<td>۳.۱۴</td>
<td>۲.۸۸</td>
<td>۷.۳۶</td>
</tr>
<tr>
<td>MnO</td>
<td>۲۰۱</td>
<td>۲۰۰.۲</td>
<td>۲۰۰.۲</td>
<td>۲۱۶</td>
</tr>
<tr>
<td>MgO</td>
<td>۲۸.۸</td>
<td>۲۸.۸</td>
<td>۲۸.۸</td>
<td>۲۸.۸</td>
</tr>
<tr>
<td>CaO</td>
<td>۲۰.۱</td>
<td>۲۰.۱</td>
<td>۲۰.۱</td>
<td>۲۰.۱</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۱.۸۱</td>
<td>۱.۸۱</td>
<td>۱.۸۱</td>
<td>۱.۸۱</td>
</tr>
<tr>
<td>K₂O</td>
<td>۴.۳۱</td>
<td>۴.۳۱</td>
<td>۴.۳۱</td>
<td>۴.۳۱</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>۰.۱۵۸</td>
<td>۰.۱۵۸</td>
<td>۰.۱۵۸</td>
<td>۰.۱۵۸</td>
</tr>
<tr>
<td>L.O.I.</td>
<td>۱۴.۴۴</td>
<td>۱۴.۴۴</td>
<td>۱۴.۴۴</td>
<td>۱۴.۴۴</td>
</tr>
<tr>
<td>Total</td>
<td>۹۹.۲۹</td>
<td>۹۹.۲۹</td>
<td>۹۹.۲۹</td>
<td>۹۹.۲۹</td>
</tr>
<tr>
<td>Cl</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
<td>۳</td>
</tr>
<tr>
<td>S</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۵</td>
</tr>
<tr>
<td>Rb</td>
<td>۲۸</td>
<td>۲۸</td>
<td>۲۸</td>
<td>۲۸</td>
</tr>
</tbody>
</table>

سنگ میزان خاک نسوز کیوتارکوه
الف) کانیشناسی

بر مبنای انباشتگی کانیایی، زونهای مختلف دگرگونی را معرفی کرده که در شکل 4 نشان داده شده است. در این شکل هر کانی مرتبه به کانسارهای رس در گستره مشخصی وجود دارد. محور x در این شکل گستره داده‌ای پایداری هر کانی را نشان می‌دهد. با نوبه به ترکیب کانی‌شناسی در جدول 1 دگرگونی از نوع اسیدی بوده و دما تشکیل بین 210 تا 280 درجه سانتی‌گراد یعنی در گستره زون پیروفیلت قرار دارد [3].
شکل ۴ ابزاری کانسوار کیوتروکه در زون پروفویلیت از دگرگونی نوع اسیدی [۳]

مربوط به نمونه‌های کانسوار کیوتروکه در گستر ۱۸۸۵ تا ۱۰۱۰ g CEC محاسبه شد که نتایج حاصل در جدول ۲ نشان داده شده است. نمونه K3 تقریباً دیکیت خالص است و نمونه K2 از یک دیکیت را برای کانسوار کیوتروکه ۲ تا ۲/۱۲ meq/100 g CEC است و آن ۱۰۰ g CEC است که میانگین کرده در ناحیه کانسوارند کانسوار ریسی در مرجع [۴] ارائه شده.

<table>
<thead>
<tr>
<th>کانسواری</th>
<th>مونت مورفولینیت</th>
<th>آلی‌فیت</th>
<th>کلریت</th>
<th>هالوریت</th>
<th>کانسواری</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEC</td>
<td>۱۵۰</td>
<td>۳۰</td>
<td>۱۵۰</td>
<td>۳۰</td>
<td>۱۵۰</td>
</tr>
<tr>
<td>meq/100 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

با توجه به جدول ۲ نمونه‌های این کانسوار در گستر ۲ نسبتاً پایینی قرار دارند که علت آن نبود کانسواری تأثیر گذار بر افزایش CEC (جذر مقدار کمی بیلیت) نوزیر مونت مورفولینیت وریکولایت و غیره است [۳].

شکل ۵ نمودار PH در نمونه‌های کانسوار نشان می‌دهد. کانسواری بیشتر حل نور دی‌کیت و زیبایی، در کانسوار به وفور یافت می‌شوند، لذا در برخی از کاربردهای صنعتی مواد معدنی این کانسوار باید نشست و شوی برخی از کاربردهای بدون (شکل ۵).
تعریف عنصر طبیعتی شیمیایی سئو را پس از تشکیل توصیف می‌کند که معمولاً ناشی از واکنش با شاره است. تعریف عنصر اصلی به معنی سه عامل اصلی کنتکست، پایداری و ترکیب کانیها در سنگ‌های دگرسان نشده، پایداری و ترکیب کانیها در محصول دگرسانی و ترکیب، دما و حجم فازسال [5] باعث تغییر خاستگاه و چگونگی دگرسانی کانسار، عنصرکمیاب و نادر مورد بررسی قرار می‌گیرند [6].

برای تشخیص سنگ را در سنگ‌های کاتولون،

<table>
<thead>
<tr>
<th>عنصر</th>
<th>مولار</th>
<th>ترکیب</th>
<th>خاصیت</th>
<th>دیگر عنصر</th>
<th>شناسه</th>
</tr>
</thead>
</table>
| Al | 30 | Ti | 40 | O | درون‌برد
| P | 20 | | | | |
پس از افزایش آزادشدن از سنگ ماده، در تشکیل کانی ابلیت و آلونیت مصرف شده و از محیط K خارج شده است. ترکیب کانی شناسی این کانسار و وجود کانی ابلیت و آلونیت در بعضی نمونه‌ها (در جدول 1) این تفسیر را تأیید می‌کند. الگوی تحرک عناصر کمیاب در K ،Th ،Ba ،Nb ،Zr ،Y ،Sr ،Rb ،As ،Kانسار مذکور (شکل 8-B) نشان می‌دهد که عناصر As نسبت به سنگ میزبان غنی‌شده‌گی نشان می‌دهند. غنی‌شده‌گی V با غنی‌شده‌گی K همراه است (شکل 8-الف) که تشکیل کانی ابلیت و آلونیت و جاکزینی Rb به جای K در ساختار Th ،V ،Nb ،Zr است. این کانی‌ها دلیل اصلی این غنی‌شده‌گی این غنی‌شده‌گی این غنی‌شده‌گی سنگین‌ی همجون مربوط به وجود احتمالی کانی‌های سنگین نظر زیرکن است که در مقابل هوازدگی پایدارند. علاوه براین V و Nb در خلال هوازدگی تحرک کمتری دارند [8].

[شکل 6: موقعیت نمونه‌های کوپسکوو در نمودار دوتایی \(\text{Al}_2\text{O}_3-\text{TiO}_2\)]

نیز غنی‌شده‌گی نشان می‌دهد. As در خلال دگرگسایی در نمونه‌های غنی از اکسید آهن As متمرکز می‌شود و بیان‌کننده شرایط اکسیاسی این زیرکن است که بر هوازدگی حاکم به هوازدگی پایدارند. با [9] [7]
پروپی کانی شناسی و روش شیمیایی کاناسر

توجه به نهایی شدگی عناصر مانند Mn، Cu، Zn و تغییر آن در شرایط دما بالا و با داشتن Co، Cu، Zn متغیر می‌شوند و نیز وجود کانی پرولیته و میکتیت که در دماهای بالا تکثیف می‌شوند، به نظر می‌رسد شاره دگرسان کننده، شاره با دما بالا است که احتمالاً منشأ آدنرین (گراتینهای شمال کاناسر) داشته و با از بخشی‌های عمیق ریشه گرفته است [2].

شکل 7 رده‌بندی سنگ‌های انتقاشی میزان کاناسر کیوبتروکوه بر مبنای نمودار Zr/TiO₂ و SiO₂ و K/Na، و Co، Cu، Zn.

Winchester, 1977

الف-عناصر الکلی

ب-عناصر کمیاب

شکل 8 الگوهای عنصر (الف) الکلی و (ب) عنصر کمیاب در کاناسر (الف) کیوبتروکوه و (ب) عنصر کمیاب در کاناسر (ب) کاناسر گناید، نرمال شده با سنگ مادر (اندرپتیهای منطقه).
بین عناصر-کمیاب، عناصر-ترکیبیاتی REE مبتنی روی فراوانی در سیستم‌شناسی آذرین، نهشتی و درگوسنی دارند. برای بررسی چگونگی عناصر-ترکیبیاتی در کانسار گیوباتو، نتایج بدست آمده از تجزیه NAA (فعالیت‌زاری نوترونی) نسبت به کنترل به هنگام شدن اگر به‌صورت آماری در شکل (8) اردوه شده است. نمونه 3 مربوط به LREE/HREE افتخال سطحی و نمونه K2 مربوط به پایین‌ترین طبقه کانسار است. نسبت K2 در نمونه K1 بر اساس 3-4:1 است و این نسبت در نمونه K2 برای 11:67 است. بنابراین HREE نسبت به LREE در بخش‌های عمیق کانسار تمایل بیشتری دارد. در مورد این عناصر شکستگی دو احتمال وجود دارد: انسجام آب و بخار از HREE که با وضوح زیاد وجود دارد. وجود این اشکال می‌تواند به بخش‌های سطحی منتقل شده‌باشد. در هر صورت، HREE همراه با HREE گرمنی در کانسار گیوباتو، مشاهده می‌شود که این کانی‌ها از نظر دمای تشکیل دارای 2 گستره متغیرتند [3].

1- کانی‌های دیتیت، پیروپلیت، و اپیت در گستره 250-280° C تشکیل می‌شود.
2- کانی‌های زئس و آلونیت در گستره 300-320° C تشکیل می‌شوند.

این نتایج با توجه به عملکرد نهایی شاره نابودی می‌رسد که توزیع عناصر-ترکیبیاتی به حلقه‌ای شاره مربوط می‌شود. بنابراین فرض اول در مورد گنی‌شکلی HREE ها در اعماق صحیح‌تر است.
نتیجه‌گیری
الف) کانی شناسی
۱- ترکیب کانی شناسی کانتسی کیورتکوه از کانولوپتیت، پیروپفیلیت، کوارتز، دیکیت، زیبس،
albite و آلوپت تشکیل شده است.
۲- ظرفیت تبادل کاتیونی رسهای کانسار در بایه ۱/۸۵ هر گرم آب ۱۰۰۰ g/10 هر گرم تبلیغات
این گستره وسیع، تابع کانی شناسی کانسار است.
۳- ظرفیت تبادل کاتیونی کانی دیکیت برای است بای با ۶ هر گرم آب ۱۰۰۰ g/10 هر گرم تبلیغات
۴- با توجه به ترکیب کانی شناسی، دمای تشکیل کانسار بین ۲۱۰ تا ۲۸۰ درجه سانتی‌گراد
است. ژوئ دِرگ‌سال کانسار رون پیروپفیلیت است.
۵- وجود کانی‌های زیبس و آلوپت، استفاده از این ماده معدنی را برای ساخت بدن‌های کاشی و
سرامیک را بدون فرآوری ناممکن ساخته است.
ب) زئوشیمایی
در کانسار مذکور به ترتیب با میانگین ۱/۳۰۰۰۰۰ و میزان SiO۲ و Al۲O۳ درصد است.
۲- با توجه به نمودار اکوس و اطلاعات زئوشیمایی از منطقه، سنگ مادر کانسار
کیورتکوه، اندرتیت است.
۳- الگوی تحرک عناصر اصلی نشان از غنی‌شدن عناصر در خلاء و P, Al, Ti, Si
در خلاء K و درد و P, Al, Ti, Zr, Y, Sr, Rb, As و غنی‌شدن عناصر Co و Ni.
۴- الگوی تحرک عناصر کم‌کمیاب نشان می‌دهد که عناصر غنی‌شده و غنی‌شدن نشان می‌دهند.

لایه و LREE/HREE نسبت به نشان از غنی‌شدن LREE/HREE
۵- الگوی عناصر نادر خاکی و نسبت
دارد که نظر می‌رسد این نسبت به LREE/HREE
۶- الگوی عناصر اصلی و غنی‌شدن

فقردانی و تنش
از دانشگاه شیراز که امکانات این پژوهش را فراهم کرده است صمیمانه فقردانی و تنش
می‌شود.
مراجع:

[5] رولینسون ه.، کاربرد داده‌های زمین‌شناسی: ارزیابی، نمایش، تفسیر، ترجمه غیرپردازه، ترجمه غیرپردازه

زاده ثمیلین، چاب و انتشارات دانشگاه تبریز (1993).

