Geothermobarometry of granitoids from Torud-Chah shirin area (south Damghan)

G.Ghorbani¹, M. Vossoghi Abedini², H.Ghasemi³

¹- Faculty of earth sciences, Damghan university of sciences, Damghan, Iran.
²- Faculty of earth sciences, Shahid Beheshti university, Tehran, Iran.
³- Department of geology, Faculty of sciences, Shahrood university of technology, Shahrood, Iran.
E-mail: ghasemghorbani@yahoo.com

(Received: 2/5/2004, received in revised form: 4/2/2005)

Abstract: Granitoid bodies of south of Damghan with northeast- southwest trend have intruded into the Eocene volcanic, volcanoclastic and Cretaceous carbonate deposits. Recent studies have revealed that the Al content of hornblende in calc-alkaline granitoids varies linearly with pressure of crystallization, thereby providing a mean of determining depth of pluron emplacement. Based on results of electron microprobe analyses, amphibole minerals present in these bodies, according to Leake are plotted in the field of calcic amphiboles and show Actinolite, Actinolite-Hornblende and Magnesiohornblende composition. Calculated pressures of emplacement, using the Al-content of Hornblende, for these bodies ranging from about 0.51 to 0.98 kbar (about depth of 1.8 to 3.5 km). The ultimate equilibration temperatures of minerals were calculated using different thermometers ranging from 613 to 772 °C.

Keywords: Barometry, Thermometry, Granitoids, South Damghan, Electron microprobe.
دما - فشارسنجی توده‌های گرانیتئیدی منطقه طرود - چهار شیرین (جنوب دامغان)

قاسم قربانی ۱، منصور وثوقی عابدینی ۲، حیب الله قاسمی ۳

چکیده: توده‌های گرانیتئیدی جنوب دامغان، با روند شمال‌شرقی-جنوب‌غربی در نهشت‌های آتششانسی و آتششانسی اولی انسان و نهشت‌های کربنای کراتاسی جایگزین کردند. مطالعات اخیر معلوم کرد که میزان AI هورنلند در گرانیتئیدهای کالکوئالکان به‌طور خیلی با فشار تبلور تغییر می‌کند، لذا وسیله‌های را برای تعیین عمق جایگزین پیوستهٔ فراهم می‌نماید. بر اساس نتایج حاصل از تجزیه ریزگرماه‌های الکترونی، کاتی‌های آمپیول موجود در این توده‌ها بر اساس تقسیبندی لیک در قلمرو کلیسک واقع شده و از نوع اکتیولیت، اکتیولیت - هورنلند و مگنتیهوئنتهای استند. فشار جایگزینی این توده‌ها با استفاده از میزان AI هورنلند در حدود ۱.۶، تا ۰.۹ به لیتر (در مقدار تقریبی ۰.۹ تا ۱.۵ کیلوتر) تغییر می‌کند. دمای تعادل کانی‌ها، با دمای‌سنجی‌های مختلف محاسبه شد و از ۶۲۲ تا ۷۷۹ درجه سانتی‌گراد تغییر می‌کند.

واژه‌های کلیدی: فشارسنجی، دماسنجی، گرانیتئیدی، جنوب دامغان، ریزگرماه‌دانه الکترونی.
مقدمه

نحوه طرود - چادشیرین مرکز شهرستان دامغان و در حدود 120 کیلومتری آن واقع است.
توده‌های نفوذی متشددی در این ناحیه با سرنوشت‌های نوسانات عواملی اولیه‌گونه سنگ‌های آن‌انه و توده‌های آوری‌گونه سنگ‌های آهکی ترسانه را مورد نفوذ قرار داده‌اند. بافت این توده‌ها (بیشتر در دایرگاه‌های پورفریک و از نظر انتزاع دانه، ریزدانه هستند) نشانگر است که نزدیک به سطح زمین گاپ‌پری کرده‌اند. همچنین وجود بافت‌های پرینتی و گرالفوئری در این سنگ‌ها بیانگر تأثیر سنگ تحت فشار بخار آب کم (زیر Kbar) است. ترکیب سنگ‌شناسی آن‌ها شامل سنگ‌های سیلیسی، سنگ‌های سیلیسی، سنگ‌های سیلیسی و سنگ‌های سیلیسی است. سنگ‌ها میکروکراتن، میکروکراتن و میکروکراتن و میکروکراتن و میکروکراتن و میکروکراتن میکروکراتن میکروکراتن میکروکراتن میکروکراتن میکروکراتن میکروکراتن میکروکراتن میکروکراتن میکروکراتن

روش مطالعه

برای بررسی کانی‌شناسی به منظور تعیین دما - فشار توده‌های نفوذی مورد مطالعه، از استفاده از عمق و فشار جایگیری توده‌های نفوذی با استفاده از شواهد صحرایی منظور از جایگیری تشکیل یک پلیوانیا فولتونیا سازوارکاری است که در آن فرآیند حجم ابتدایی شده که ممکن است در جابه‌جایی پلیوانیا (درون با روی پوسه) جای می‌گیرد. برای ارزیابی شرایط جایگیری یک توده نفوذی، روشنایی مختلفی و روش‌های مختلفی وجود دارد. یکی از روش‌های مرسوم استفاده از شواهد صحرایی است که می‌تواند به وسیله آن انسجام و سیستم نیوپتولارکیها را تحقیق کرد. سنگ‌های اصلی درون‌گیر توده‌های نفوذی مورد مطالعه را سنگ‌های آن‌انه اشکال‌گیری نفوذی در این منطقه بیان می‌کند.
ارزیابی دما و فشار طیارهی توده‌های نفوذی با استفاده از هاله دگرگونی مجاورتی

محاطه که اشاره شد، سنگ‌های درونگیر توده‌های نفوذی مورد مطالعه را سنگ‌های آنفشتانی و کریتیته که تشکیل می‌دهند، هاله دگرگونی موجود در برخی از توده‌ها از گسترش چندانی برخوردار نیست. پارازنت کالی‌ها شناسی ابدوت + کلریت + ترمولیت - اکتیوبولیت + ألیبت، پارازنت اصلی موجود در همیار سنگ‌های آنفشتانی می‌باشد که توده‌های نفوذی هستند. پارازنت کالی‌ها شناسی ابدوت + کلریت + ترمولیت + کوارتز + تالک + مسکوویت نیز با پشت کراتوبولیستیک در سنگ‌های کریتیته مجاور این توده‌ها وجود دارند. به نظر وینکلر [4] این پارازنت‌های کالی‌ها شناسی متعلق به درجه یا بین دگرگونی با رخ‌های آلیبت- ابدوت هوهنلس است که در مجموع ۵۵۰ نا ۵ درجه سنگی گراد و فشار زیر ۴ کیلو پاس دگرگون شده‌اند. با توجه به این اصل که توده‌های نفوذی می‌توانند حدود ۶۰ درصد گرمی خود را به سنگ‌های مجاور منتقل کند [4] و بر پایه پارازنت‌های کالی شناسی یادشده فوق، دمای ۸۲۳ تا ۱۸۲ درجه سانتی گراد برای توده‌های منطقه تخمین زده می‌شود.

فرمول ساختاری و رده‌بندی آمفیبول‌ها

بلورهای آمفیبول در سنگ‌های مورد مطالعه، اغلب بهصورت نیمه‌شکل‌دار، تا حروف پایه، با داشتن دو سیستم رخ در مقاطع عرضی مشخص می‌شوند، لیک و هم‌کاران [5] با توجه به نوع عناصری که در موقعیت B ساختار بلوری قرار می‌گیرند، آمفیبول‌ها را به جبه دست تکسیم - نا نموده‌اند. آمفیبول‌های سنگ‌های مورد مطالعه بر اساس این تکسیم‌پذیری در قلمرو Fe – Mg – Mn کلسیک قرار می‌گیرند. به جز می‌توان به این قلمرو، آمفیبول‌های محتمل واقع می‌شود (شکل ۱-الف). قلمرو کلسیک را با سرشتی‌های زیر می‌توان تمایز داد:

\[
\sum (Ca + Na) \geq 1.5, \text{Ca}B \geq 0.5, \text{Ca}B \geq 0.5, Ti < 0.5
\]

در این قلمرو، جهار گره‌های مشخص شده‌اند [ان و [6].

1- Winkler
2- Leake et al
ب- \((\text{Na}+\text{K})\ A \geq 0.5\) و \(\text{Ti} \geq 0.5\)

\(c-\) \((\text{Na}+\text{K})\ A < 0.5\) و \(\text{Ca} A \geq 0.5\)

\(d-\) \((\text{Na}+\text{K})\ A < 0.5\) و \(\text{Ca} A \geq 0.5\)

امفیبول‌های مورد مطالعه در این تحقیق در گروه \(\text{Na}+\text{K}\) قرار می‌گیرند و از نوع اکتینولیت، اکتینولیت-هورنیلن و مگنیوهوتونیلن هستند (شکل 1-ب). امفیبول‌های کلسیک شاخص توده‌های نفوذی نوع ۱ هستند [۵]. ترکیب شیمیایی امفیبول‌های تیتانه‌نفوذی منطقه مورد مطالعه در جدول ۱ ارائه شده است.

شکل ۱. نام‌گذاری امفیبول‌ها بر اساس روش لیک [۵]. (الف) امفیبول‌های توده‌های تیتانه‌نفوذی مورد مطالعه در گروه کلسیک قرار می‌گیرند. (ب) ترکیب امفیبول‌ها از نوع اکتینولیت، هورنیلن، اکتینولیتی و مگنیوهوتونیلن هستند. پارامترهای این دیاگرام شامل \(\text{Ti} \geq 0.5\) و \((\text{Na}+\text{K})\ A \geq 0.5\) است.

\[
\begin{align*}
\text{Gandi granite} \quad \text{Baglo granodiorite} \quad \text{Chalo monzodiorite} \\
\text{Fe-Mg-Mn} \\
\text{Na-Ca} \\
\text{Fe-Cr} \\
\text{Tschermakite} \\
\text{Hbl} \\
\text{Hbl} \\
\text{Tschermakite} \\
\text{Fe-Tschermakite} \\
\end{align*}
\]
جدول ۱: ترکیب شیمیایی کانال‌های آمفیبول موجود در توده‌های لوفی‌ای منطقه چالو (G) و گندی (Gl).
فشارسنجی با استفاده از آلومینیوم هورنبلند

<table>
<thead>
<tr>
<th>Act. Hornblende</th>
<th>Sample</th>
<th>3G1-1</th>
<th>3G1-2</th>
<th>2G-1</th>
<th>2G-2</th>
<th>2G-3</th>
<th>2G-4</th>
<th>2G-5</th>
<th>2G-6</th>
<th>2G-7</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td></td>
<td>51.61</td>
<td>51.61</td>
<td>53.52</td>
<td>52.24</td>
<td>53.85</td>
<td>51.19</td>
<td>51.74</td>
<td>58.87</td>
<td>58.78</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td></td>
<td>4.71</td>
<td>4.71</td>
<td>4.87</td>
<td>4.67</td>
<td>4.75</td>
<td>4.87</td>
<td>4.93</td>
<td>4.78</td>
<td>4.78</td>
</tr>
<tr>
<td>TiO₂</td>
<td></td>
<td>1.07</td>
<td>1.07</td>
<td>1.05</td>
<td>1.07</td>
<td>1.09</td>
<td>1.11</td>
<td>1.13</td>
<td>1.08</td>
<td>1.08</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td></td>
<td>0.06</td>
<td>0.06</td>
<td>0.07</td>
<td>0.06</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
<td>0.07</td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
<td>0.95</td>
</tr>
<tr>
<td>MgO</td>
<td></td>
<td>14.94</td>
<td>14.94</td>
<td>15.29</td>
<td>15.44</td>
<td>14.71</td>
<td>15.92</td>
<td>15.39</td>
<td>15.72</td>
<td>15.72</td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>11.86</td>
<td>11.86</td>
<td>11.86</td>
<td>11.86</td>
<td>11.86</td>
<td>11.86</td>
<td>11.86</td>
<td>11.86</td>
<td>11.86</td>
</tr>
<tr>
<td>Na₂O</td>
<td></td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
<td>0.47</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>91.88</td>
<td>91.88</td>
<td>91.88</td>
<td>91.88</td>
<td>91.88</td>
<td>91.88</td>
<td>91.88</td>
<td>91.88</td>
<td>91.88</td>
</tr>
</tbody>
</table>

T spaces

| | | 7.85 | 7.85 | 7.85 | 7.85 | 7.85 | 7.85 | 7.85 | 7.85 | 7.85 |
| Al³⁺ | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 | 0.46 |

M1-M3 spaces

		0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13	0.13
Cr²⁺	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04	0.04
Fe²⁺	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54	1.54
Ti³⁺	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
Mg	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44	3.44
Sum M1-M3		5.60	5.60	5.60	5.60	5.60	5.60	5.60	5.60	5.60

M4 spaces

		0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20	0.20
Fe³⁺	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19	0.19
Mn	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46
Ca	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59	1.59
Na	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25	0.25
Sum M4		2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50	2.50

A spaces

		0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55	0.55
K	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37	0.37
Sum A		0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92

Sum cat. 12.0 V 15.0 A 15.0 V 15.0 V
آمفیبولها قابل استفاده‌ترین کانی‌ها در دما - فشار نسبتی در سنگ‌های آدرین کالکوانال هستند. زیرا تقریباً در تمام توده‌های نفوذی کالکوانال سرقتی از تركیبات بازیک، حد واسط بایستی تشکیل می‌شوند و در محصول تجهیزات از P-T 23 Kbar و در دماهای 400 تا 1150 درجه سانتی‌گراد پایدارند [5 و 6]. بسیار از دما - فشارنیمه‌های اساس میزان اولوپیون هورنبلند هستند. زیرا میزان اولوپیون هورنبلند از انرژی مستقیم با عمق جاگزینی پلوتون هست. فرمول‌های زیبایی در این اساس توسط محققین ارائه شده است. اشیم‌های [A] معادله زیر را با استفاده از 4-

\[P (\pm 6.5 \text{ Kbar}) = 201 + 4.76 \text{ Al} \]

این ارزیابی از اهمیت‌گذاری به‌طور قابل قبولی به ارزیابی تجزیه صحراکی که توسط هاله‌های دگرگونی همبستگی با آراورد و به دست آمده است مطابقت دارد. فشار و عمق جاگزینی توده‌های نفوذی منطقه مورد مطالعه با فرمول‌های اسفنج که با استفاده از 4-

\[\text{P (±6.5 Kbar)} = 201 + 4.76 \text{ Al} \]

فشار جاگزینی توده گرانیتی گنگی بین 59 تا 98 کیلوبار (عمق 2 تا 315 کیلومتر) و توده کوازنت موروز دیپوزیتی چالو طیف تغییرات بین 51 تا 75 کیلوبار (عمق 18 تا 32 کیلومتر) را نشان می‌دهد. آمفیبول‌های توده باعث جویان نوع اکتشفیت بودن در محاسبات استفاده نشدن. جوانگی مشاهده می‌شود بر اثر فشار بر این فرمول و شواهد صحراکی مطالعه نسبتاً خوبی با یکدیگر دارند.

دمسنجی آمفیبول - پلازوکلاز

3-Schmidt
4-Whole rock
5-Blundy and Holland

۶- علامت □ حاوی خالی‌ها در موقعیت A نشان می‌دهد.

\[
T \pm 311 K = \pm 0,8782 P - 498,94 + Y / \left(-4.249,8 - 8314 \right) \text{LnK}
\]

\[
K = (Si - 4/8 - Si)x_{Plag}^{ab}
\]

در این فرمول Si تعداد اتمی Si در واحد فرمولی آمفیبول P برحسب کلیه و برحسب کلیه Y در هر واحد فرمولی آمفیبول Si است. برابری (QDF) نشان دهنده نامعلومی پلاژیکولز به عنوان فرمولی دوم دارکن است. برای است. برابری

\[
Y = \left(X_{ab} \right) - X_{ab} \text{ مقدار} 0.5 \text{ و } X_{ab} < 0.5 \text{ مقدار} 1 \text{ است.}
\]

وینهال و همکاران \(\text{ از فرمول زیر را ارائه کرده‌اند:} \)

\[
T = 253 P + 654.9
\]

دمای تعادل هورننده‌های همیژت با پلاژیکولز در توده گنبدی، بر اساس فرمول بلوندی و هلند [9]، بین 647 تا 625 درجه سانتی‌گراد و بر اساس فرمول وینهال [10]، بین 670 تا 675 درجه سانتی‌گراد و بر اساس فرمول هلند و هلند و هنچال درجه سانتی‌گراد بسته می‌آید. برای تعادل چالو بر اساس فرمول هلند هلند [9] و وینهال [10] به ترتیب بین 722 تا 713 و 674 تا 676 درجه سانتی‌گراد بروآورد شده است. به علت اینکه آمفیبول‌های توده یا گونه اکتیولیت هستند، دمای آنها محاسبه نشده است.

دماسنجی آمفیبول – پتروگری

با استفاده از نمودار لزی [11] که بر اساس ضریب توزیع آهن و منزیمین بین دو کانی همیژت آمفیبول و کلینوبروکسین ترسیم شده است، دمای تعادل 265 درجه سانتی‌گراد براپای کاتی‌های همیژت آمفیبول و کلینوبروکسین در توده چالو به دست می‌آید (شکل ۲).

دماسنجی سه فلدسپاری

با توجه به اینکه فشار چاپ‌گیری توده‌های نفوذی منطقه مورد مطالعه که در حدود یک کیلوبار پراورد شده است، در نمودار سه فلدسپاری P–Or–Ab–An برآورد شده است. در نمودار سه فلدسپاری ۹۱۲ الکتروزی می‌باشد کیلوبار فشار، دمای کمتر از ۷۵ درجه سانتی‌گراد برا پراورد فلدسپارها به دست می‌آید (شکل ۳).

7- Non – ideality
8- Darken’s Quadratic Formation
9- Vyhnal et al.
10- Lindsley
شکل ۲ تعبیر دمای تعادل بین کانی‌های همزیست کلینوبیروکسن و آمفیول با استفاده از ضرب توزیع آهن و منیزیم اقتباس از مراجع ۱۱. دمای تعادل این کانی‌ها نشان‌دهنده دمای ۲۵۰ درجه سانتی‌گراد می‌باشد.

شکل ۳ نمودار سیستم An-Ab-Or برای تعبیر دمای تعادل بین کانی‌های فلزپیار موجود در توده‌های تنوشی منطقه مورد مطالعه. هم‌دمایا بر حسب درجه سانتی‌گراد از سک [۱۲] در فشار یک کیلوبار هستند. به جز هم‌دمای ۹۰۰ درجه سانتی‌گراد که بر فشار نیم کیلوبار است. نمونه‌ها مورد مطالعه دمای کمتر از ۲۵۰ درجه سانتی‌گراد را نشان می‌دهند. برداشت
مطالعات سنجش‌شناختی نشان‌دهنده مجموعه کانی‌شناسی کوارتز، آتاقالی فلدسپار، پلاژیوکلز، بیوتین، آمفیبول، پیروسکس، آبانتیت، تیتانیت، زیکریت، تورمالین، اکسید‌های و تیتان (مگنتیت و ایلمینیت) برای توده‌های نفوذی منطقه طرود-چهار شیرین است.

بر منای تجزیه کانی‌های تشکیل‌دهنده این سنگ‌ها با استفاده از ریزگشاء الکترونی کانی‌های آمفیبول موجود در این توده‌ها از نوع اکتشافی، آکتشافی-پلی‌آکتشافی، و مگنتی-آکتشافی تعیین شدند. توده‌های گرانتونیتی جنوب دامغان در بهشت‌های کریستاله و سنگ‌های آتشفشانی انتون سی جای گرفته‌اند. سنگ‌های نفوذی یادشده با احتمال به الگوسن نسبت داده می‌شود و بر یک‌های ضخامت سنگ‌های دورگنگ، عمق تشکیل آنها در حدود 2 تا 3.5 کیلومتر (فشار حذفی 5 تا 1 کیلوبار) است. سنگ‌های پیرامون توده‌ای که به یاد می‌آید است. هورنفلس درگون شده‌ای که به یاد می‌آید کانی‌های سنگی موجود در این سنگ‌ها، فشار کمتر از 2 کیلوبار و دمای حذفی 83 تا 58 درجه سانتی‌گراد به عنوان شرایط تشکیل برای آنها ارائه‌پذیر خواهد بود. این نتایج هماهنگ قابل قبولی با نتایج حاصل از دما-فشارسنجی با استفاده از ترکب‌سنجی کانی‌ها دارد، به‌گونه‌ای که فشار جایگیری توده‌ها با استفاده از میزان A1 مربوط به حاشیه‌هورنفلد می‌باشد. حاشیه‌هورنفلد در حدود 0.51 تا 0.9 کیلوبار است و بر یک‌های خاص هورنفلس آمیزی نمی‌کند. این سنگ‌ها در حذفی 612 تا 772 درجه سانتی‌گراد بر اثر شده است.

فشار جایگیری توده‌های نفوذی از اساس میزان A1 کانی‌های هورنفلد، برای توده گرانتونیتی گندی بین 0.59 تا 0.58 کیلوبار (عمق جایگیری 4.5 تا 3.5 کیلومتر) و برای توده کوارتز‌موزوتروپی چاپول بین 0.51 تا 0.57 کیلوبار (عمق جایگیری 11.8 تا 4.1 کیلومتر) را به‌دست می‌دهد. با توجه به اینکه آمیزی‌های جایگیری از نوع اکتشافی‌نشست هستند لذا در محاسبات فرمول‌های حذفی مربوط به تعیین فشار بر اساس A1 هورنفلد استفاده نشده‌اند. لیا با توجه به ترکب‌سنجی کانی‌های سنگی، موافقیت و بافت ظاهر نسبت به توده‌های گندی و چاپول، این توده‌ها نیز با بسته بندی افرازی و جایگیری در حذفی 18 تا 3.5 کیلومتر تا 2.1 کیلومتر باید در نظر گرفته شود.

دماهای پایین به‌دست آمده با توجه به امکان تعلل می‌تواند تأثیر بین جو زمین و پایه نظام توده‌های به‌دست آمده نیز برای دمای زمان تحلیل آنها تعیین شده است.

قدرتانست و تشکر

[4] "هوارمندزد ع، پتروژن سبک‌های دکترگونه، دانشگاه شیراز (1371)، صفحه 408.

