Kondo effect with volume change in critical point for isostructural Gd$_2$Au$_x$Al$_{1-x}$ intermetallic compound

Mehdi Vaezzadeh$^1$, A. Yazdani$^2$, Majid Vaezzadeh$^1$, A. Kanzeghi$^3$

1- K.N. Toosi university of technology, Tehran Iran, 
2- Tarbiat Modarres university, Tehran, Iran 
3- Tehran North Azad university, Tehran, Iran 

Email:vaezmehi@yahoo.com

(Received: 28/11/2004, received in revised form: 22/9/2005)

Abstract: In this paper, results from X-ray diffraction and the variation of electric resistance versus temperature of Gd$_2$Au$_x$Al$_{1-x}$ intermetallic compound are reported. All samples formed in orthorhombic crystalline structure with Pnma space group. In measuring the lattice parameters by X-ray diffraction method, deviation from Vegard’s rule has been seen. This deviation at x = 0.4 maximizes. In addition, an abrupt volume change equal to 6% occurs at the critical point x = 0.4. For all samples, by increasing the x-parameter, we have seen increasing in the Curie temperature $T_c$. Magnetic susceptibility $\chi(T)$ is increased versus x-parameter, too. The results of electric resistance measuring in sample with critical value (x = 0.4) shows a behavior like Kondo effect which is not observed in other samples. For compounds based on Gd, this undesirable behavior could be related to 4f sublevel which it concentrates free electrons around Gd ion.

Keyword: Kondo effect, Local magnetic moment, Exchange interaction, Conduction electrons, Intermetallic compounds, Vigard’s rule.
تغییر حجم یاکتی با سبب بدون تغییر فاز بلوری و پیدایش اثر کوندو در نقطه بحرانی ترکیبات بین فلزی بر پایه عنصر Gd مغناطیسی

مهدی واعظ زاده 1، احمد یزدانی 2، مجید واعظ زاده 3، یکی کننده قی 4

1- تهران، دانشگاه صنعتی خواجه نصیرالدین طوسی
2- دانشگاه تربیت مدرس تهران
3- دانشگاه آزاد تهران، واحد شمال
4- vaezehmehdi@yahoo.fr

چکیده: در این مقاله نتایج اندازه‌گیری پراش پرتو X و تغییرات مقاومت الکتریکی بر حسب دمای ترکیبات بین فلزی $\text{Gd}_2\text{Au}_3\text{Al}_x$ گزارش شده است. تمام نمونه‌ها دارای ساختار بلوری راستگوشه با گروه فضایی $\text{Pnma}$ هستند. در اندازه‌گیری پارامترهای شبکه با استفاده از وری پرتو $X$, انحراف از قاعده ویگنارد دیده می‌شود. این انحراف در $x = R$ به بیشینه هستند. در مقدار پرتو $X$ در مقدار بحرانی $14 = R$ رخ می‌دهد. برای همه نمونه‌ها با افزایش پارامتر $x$ شاهد افزایش دمای کوری $T_c$ هستیم. پذیرفتاری $\chi(T)$ نیز بر حسب پارامتر $x$ کاهش می‌یابد. نتایج اندازه‌گیری مقاومت الکتریکی در نمونه با ترکیب پرتو $x = R$ مشابهه نشده. این رفتار عاملی برای ترکیباتی بر پایه عنصر Gd می‌تواند به زیر تراز $4f$ مشاهده نشده باشد. این رفتار عاملی برای ترکیباتی بر پایه عنصر Gd می‌تواند به زیر تراز $4f$ نسبت داشته که الکترون‌های آزاد را حول پوینت $Gd$ می‌کند.

واژه‌های کلیدی: اثر کوندو، گشتاور مغناطیسی موضعی، قانون گازی اکسون، الکترون‌های رسانش، ترکیبات بین فلزی، قانون ویکارد.
مقدمه

اثر کویندو در سال 1971 توسط هاسیگاوا و تیسوی در ترکیبات آمورف PdSi در آن جایگزین شده بوعدن مشاهده شد. این اثر که عبارت است از وجود کمینه مقاوتات الکتریکی در دمای مشخص تختهین بار برای ترکیباتی با اخالصی 3d شد. در واقع توجه فیزیکی ارائه شده برای این اثر، مشاهده یا در ترکیباتی با اخالصی مقاوتات الکتریکی برحس دمای ترکیبات (Gd₃PdSi₃)، کمینه مشخصی را مشاهده کردند.

(Previewer effect) در توجه پیشینه مشاهده شده، آنان مکانیسمی همچون اثر پیش درآمده مغناطیسی

روش تهیه نمونه ها و اندازه‌گیری نمونه‌ها به روش ذوب در کوره فسیگ و های استاندارد که در فضایی که آگر آن وجود دارد، به‌طور XRD و صورت پذیرشته است. در حالی که پرآمره‌ای شیمیایی شکل به روش ایجاد یک ضریب تحت تأثیر فراکتیویت تحت بوعدن. تمایل به فیزیکی شده. این اثر HREM و کمینه مقاوتات الکتریکی برابر با ایجاد اتصالات الکتریکی توسط ریز‌نفوذ انجام شده است.

بحث و برداشت

تغییرات شیمیایی شکل برحس x در شکل 1 ارائه شده است. برخی از ترکیبات هم که قابل و x این ترکیبات به‌طور پنوما پیدا شدند. برای آزمایش گرفته است، ساختار بلوری از راستگوگری و گروه فضایی Ra نشان می‌دهد، که البته تمام نمونه‌ها دارای ساختار بلوری یکسان هستند. با پنوما و گرد، با
جانشینی Al انتظار می‌رود که پارامترهای شبکه به طور خطی تغییر کند. اما نتایج نشان دهنده انحراف از این قاعده هستند. در واقع جانشینی عنصر Al به‌طور صرفه جویی افزایش تراکم الکترونها در ازدست یافته‌ای جالب اینکه حجم باعثه بکه با نشانه Finally و عنصر Alometinوم، افزایش می‌یابد. این در حالت است که شعاع پویای طلا از شعاع پویای الکترونی برگنگ است. با توجه به این نکته کاهش حجم باعثه بکه انتظار می‌رست، ولی در عمل عکس آن راهبه کردن. در شکل 2 تغییرات نسبی حجم باعثه بکه برحس پارامتر x رسم شده است. حالتی شبکه نیمه‌ده نمونه‌ها به دو گروه حجمی تقسیم می‌شوند و شاهد تغییر حجمی در نقطه x=0.4 هستند. که به طور ناگهانی، به مقدار 6 درصد می‌دهد. این تغییر حجم ناگهانی را می‌توان با توجه به هم ساختار بودن نمونه‌ها به تغییر شکل سطح فرمی در فضای شبکه ایجاد نسبت داد. بدین ترتیب که بررسی فرمی به طور ناگهانی کاهش می‌یابد (جوان افزایش حجم در فضای حیاتی را شاهد می‌توان آن را به کاهش بررسی فرمی در فضای وارون نسبت داد. در چنین حالتی در دمای پایین بر اثر کنوندو سطح مداهی شکل گرفته (بر کنوندو) در شبکه وارون به صورت سطحی مجزا از یکدیگر خواهد بود و در نتیجه بهمکشی ناکامان می‌کنند الکترونها و موضعی (بر کنوندو) الکترونها و رسانش را می‌توان انتظار داشت که موجود بودن اثر کنوندو در نمونه می‌شود [16].

![شکل 1: تغییر پارامتر شبکه با x (با افزایش x، تراکم الکترون‌های رسانش کاهش می‌یابد)](image1)

![شکل 2: تغییر حجم نسبی باعثه بکه Gd<sub>2</sub>Al<sub>6</sub>ب برحس پارامتر x در ترکیب x کنوندو x در نمونه می‌شود (با افزایش x، تراکم الکترون‌های رسانش کاهش می‌یابد)](image2)
این نکته که تأثیر الکترونهای رسانش در رفتار فرومغناطیسی نه تنها به تعداد الکترونها بلکه بیشتر از همه به شکل تراز رسانش بر روی الکترون‌های متصلی دارد. تدوین سیستم GdCu-GdPt سیستم‌هایی مورد تأکید قرار گرفته است. از طرفی دیگر در مطالعه تغییرات پذیرفتاری مغناطیسی نمونه‌ها، شاهد بودیم که کاهش پارامتر X موجب کاهش $\chi$ و افزایش $\gamma$ می‌شود (16). کاهش پذیرفتاری تأمین کننده روند رو به رشد حضور فاز پادکت و افزایش دما که برای یک تابع دنیا فاز مغناطیسی یعنی وجود همزمان دائم فاز مغناطیسی و افزایش دما به دو هزار ذکر است. در میان‌ها است. شایان ذکر است که در دمای بالاتر از دامی کواندو، اعمال یک میدان مغناطیسی قوی باعث می‌شود فاز مغناطیسی را درون بینو و اثر کواندو است. اثر کواندو در حیطه که تابع برهم کش نیلی RKKY نمایش داده شده است. در آن $J_{ij}$ نمایه اندازه‌گیری می‌شود (14). $J_{ij}$ تابعی از فاصله جدی یونهای مغناطیسی است که به صورت مقابل است.

$$J_{ij} \propto \frac{e^2F(2k_i |R_i - R_j|)}{E_F}$$

$$F(w) = \frac{1}{w^4} (w \cos w - \sin w) : \quad w = 2k_i |R_i - R_j|$$

که در آن، $R_i$ برای جفت یونهای مختلف در مرحله (14) محاسبه شده است. در نمودار تغییرات $J_{ij}$ حسب $|R_i - R_j|$ مقاله مطالعات دارد. در مطالعه دیگری که برای محض ساختن اثرات RKKY نمونه‌ها را به صورت یونی شده در آورده‌ایم، که اثر کواندو در دو مرحله مجزا خود را نشان می‌دهد و اگر اثر کواندو غلبه گردد، دیگر اثر کواندو را نمی‌توان دید (16) که اگر اثر کواندو غلبه گردد، دیگر اثر کواندو را نمی‌توان دید (16). اگر اثر کواندو غلبه گردد، دیگر اثر کواندو را نمی‌توان دید (16). اگر اثر کواندو غلبه گردد، دیگر اثر کواندو را نمی‌توان دید (16).