The geochemistry and mineralogy of North C ore body and Baghak anomaly and determination of two Pyrrhotite generations which are different in composition in Sangan mine, eastern Iran

Sh. Kaheni, S. A. Mazaheri, M. H. Karimpour

Department of Geology, Faculty of sciences, Ferdowsi university of Mashhad-Iran
E-mail: shivakaheni@yahoo.com
(Received: 7/5/2007, in revised form: 19/4/2008)

Abstract: Detailed studies are done in order to investigate the ore body in Sangan mine. Analyses results showed very low amount of gold in mineralized zone, (max 32 ppb). It is indicated that there is a positive relation between Au, S and As whereas there was no special relation between Au and Cu. Therefore Au can not be found along with Cu sulfides such as chalcopyrite. The LREE elements are higher than HREE in the ore body. Pyrrhotite has two generations which are distinguishable under the microscope: It might be formed either with or after magnetite formation. Careful XRD studies indicate that these two generations have different amounts of Fe and S.

Keywords: Magnetite, Pyrrhotite, Sulfide, Iron stone, Fe oxide type, Gold, Copper, Sulfur, Rare earth element (REE), XRD.
بررسی‌های زئوستیمیایی و کاتی‌شناسی سنگ آهن توده C شمالی و بتک در معدن سنگان
خواف در شرق ایران و تغییر حضور دو نسل پیروتیت با ترکیب زئوستیمیایی متفاوت

شیوا کاهنی، سید احمد مظاهری، محمدحسن کریم‌پور
گروه زمین‌شناسی، دانشکده علوم، دانشگاه فردوسی مشهد
پست الکترونیکی: shivakaheni@yahoo.com
(دربایت مقاله: ۱۳۸۷/۱۲/۱۷، نسخه نهایی: ۱۳۸۷/۱۲/۱۷)

چکیده: نتایج تجزیه‌های زئوستیمیایی و کاتی‌شناسی موجود در کاسار سنگان خواف نشان داد که عنصر طلا در به‌خش‌های کاتی ساخته شده مقدار می‌باشد. بنابراین، در این مقاله، موردی بررسی نشده که در تهیه صورت E, REE و Cu-Au و Fe-oxide و Fe-oxide Cu-Au Deposit متفاوت با این سنگ‌های مصرف شده است. در حال حاضر به‌مرور دارای این سنگ‌های Fe-oxide Cu-Au Deposit می‌باشد.

روزنامه پژوهشی وکی ایران
نام: شیوا کاهنی
عنوان: بررسی‌های زئوستیمیایی و کاتی‌شناسی سنگ آهن توده C شمالی و بتک در معدن سنگان خواف در شرق ایران و تغییر حضور دو نسل پیروتیت با ترکیب زئوستیمیایی متفاوت

مقدمه
در ایران نیز این گونه کانی‌های توسیع کریم پور (۱۳۸۲) معرفی شد و کمیون تریت‌هیدریم - کاشر- اتیابه به عنوان کمیونی Fe Oxide نامگذاری شده است.

نظر به اینکه کانی‌های سکه‌ای سیاست خواهد یافت از مهندسین معدنی، این ایران به شمار می‌رود، لذا گونه کانی‌های Fe Oxide دenty در بروی نماینده مختلف از زونهای کانی‌های سیستمی و سولفیدی آن صورت گرفت.

زمانی دیگری در زمین ساختاری حوضه‌هایی مفید ساختار صورت گرفته‌است، منطقه سکه‌های خواه جزء ایران مرکزی است.

در اینجا نیز مثل بخش‌های دیگر ایران مرکزی، بیشتر سیلی گل‌ها صورت هورست و گران دیده می‌شوند و محیط‌هایی به نشانه‌ای تا شکل داده‌اند.

بر پایه تحقیقات اخیر (۱۳۸۷) که بر پایه چگونگی ساختاری حوضه‌هایی به نشانه‌ای صورت گرفته‌اند، منطقه سکه‌های خواه جزء ایران مرکزی است.

در اینجا نیز مثل بخش‌های دیگر ایران مرکزی، بیشتر سیلی گل‌ها صورت هورست و گران دیده می‌شوند و محیط‌هایی به نشانه‌ای تا شکل داده‌اند.

بر پایه تحقیقات اخیر (۱۳۸۷) که بر پایه چگونگی ساختاری حوضه‌هایی به نشانه‌ای صورت گرفته‌اند، منطقه سکه‌های خواه جزء ایران مرکزی است.

در اینجا نیز مثل بخش‌های دیگر ایران مرکزی، بیشتر سیلی گل‌ها صورت هورست و گران دیده می‌شوند و محیط‌هایی به نشانه‌ای تا شکل داده‌اند.

[Downloaded from ijcm.ir on 2022-02-04 02:04:45]
متنوینی بیوریافی تشکیل شده است. با توجه به حضور مکاتسب دریک کلیوشو در فرآیندهای آدنزین درونی و نیمه عمیق، حضور فراوان سنتی‌های درگون، به دیدن نمی‌رسد. بنابراین، بخش بیشتری از سنتی‌های آدنزین و نیمه عمیق تحت تاثیر بی‌ثبات این است. این تغییرات بیشتر به تاثیر تبیت مجدد کاتی‌کمبی و یا تابی آگونه‌های ماماگنیک (متاسوماپیسم) در آن و تشکیل اسکارک است.

زمینه‌شناسی گسترش‌کننده

تقدیمی تین سازنده موجود در منطقه معدن شال سیلتا و شیلات و استخر سان دیئروآ و دیگر شاه‌زورونسکی زیرین با شکم‌پیشی بیش از ۵۰۰ متراً. رخنه‌های زیادی از آنها در بخش شمالی توده‌های معدنی با روند شرقی - غربی مشاهده می‌شود.

کربنات‌های مرمری شاه دوروسیک میانی که مکتنی است، دنباله نوزنی‌ها را می‌پوشاند در فرآیندهای C و A می‌باشد. جویبی این مرمرها به اسکارک جانشین صدای واقع در توده‌های A و B سلولیت‌های زیرین مرمر. سنگ‌های کریستالی با آسیاب‌های ده‌هاین در این نوع توده‌های کربنات‌های پیش‌گو در استخوان‌ها، بیشتر شامل بسته‌سازی، برنکالستاهای آنژینی و استخوان‌های کریستالی‌کننده یک واحده ناتوانی بین سنتی‌های کرینی‌ها و پیکالستاهی‌ها. بنابراین وجود دارد. این واحدهای در اکثر موارد و پیکالستاهای با لیپولایته‌های درد نیمه زاویه‌دار از آنها، شبی سیستم و ماس سنتی تکامل شده است.

در بخش شمالی توده‌های غربی گرانت سترسون با سنین انسان در سرازی‌ها توده کرده است. چندین زون اسکارکی اضافی در جوار گرانت سترسون وصلی به توده‌های معدنی دورتر از گرانت تشکیل می‌شود.

روش پراش پترو

۳۱۶

کاهنی، مظهری، کریپور
جدول ۱ نتایج آنالیز شیمیایی نمونه‌های مگنتینی از مزه‌های حفایزی مربوط به توده‌های بافک و C شمالي.

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Au</th>
<th>As</th>
<th>Co</th>
<th>Cr</th>
<th>Cu</th>
<th>Mn</th>
<th>Ni</th>
<th>Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITS</td>
<td>ppb</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>DETECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN-41</td>
<td>942</td>
<td>14</td>
<td>414</td>
<td>14</td>
<td>942</td>
<td>14</td>
<td>414</td>
<td>14</td>
</tr>
<tr>
<td>SN-543</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>SN-570</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>SN-586</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>SN-615</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>SN-796</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>SN-67-B</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Zn</th>
<th>Ba</th>
<th>Be</th>
<th>Ti</th>
<th>Fe</th>
<th>Hg</th>
<th>Ag</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITS</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>DETECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN-41</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-543</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-570</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-586</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-615</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-796</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-67-B</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-67-A</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SAMPLE</th>
<th>Bi</th>
<th>Mo</th>
<th>Pb</th>
<th>Sb</th>
<th>Sn</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITS</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>DETECTION</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SN-41</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-543</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-570</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-586</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-615</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-796</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-67-B</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
<tr>
<td>SN-67-A</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
<td><</td>
</tr>
</tbody>
</table>
جدول 2 نتایج آنالیز شیمیایی انجام شده بر روی نمونه‌های کانسک مگنتیتی توده‌های C شمالی و با غاک به دست‌گاهی آنالیز شیمیایی

<table>
<thead>
<tr>
<th></th>
<th>Ag</th>
<th>Cu</th>
<th>Ni</th>
<th>Co</th>
<th>Zn</th>
<th>Ba</th>
<th>Bi</th>
</tr>
</thead>
<tbody>
<tr>
<td>BH127</td>
<td>65</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH127</td>
<td>55</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH128</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH128</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH193</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH193</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH218</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH218</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH220</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH2123</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH136</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH136</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH217</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH217</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH118</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH118</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH198</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BH198</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BK3</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BK6</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BK7</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BK9</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BK9</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BK8</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>BK5</td>
<td>75</td>
<td>7</td>
<td>160</td>
<td>65</td>
<td>18</td>
<td>3</td>
<td>0</td>
</tr>
</tbody>
</table>

جدول 3 نتایج آنالیز شیمیایی عناصر خاکی کمیاب دو نمونه مگنتیتی از محله‌های حفاری توده‌های C شمالی

<table>
<thead>
<tr>
<th></th>
<th>Ce</th>
<th>Dy</th>
<th>Er</th>
<th>Eu</th>
<th>Gd</th>
<th>Ho</th>
<th>La</th>
<th>Lu</th>
<th>Nd</th>
<th>Pr</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITS ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>DETECTION</td>
<td>ppm</td>
</tr>
<tr>
<td>METHOD IC3R</td>
<td>IC3R</td>
</tr>
<tr>
<td>SN-67-B</td>
<td>ppm</td>
</tr>
<tr>
<td>SN-67-A</td>
<td>ppm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Sm</th>
<th>Tb</th>
<th>Tm</th>
<th>Yb</th>
<th>Ir</th>
<th>Os</th>
<th>Pd</th>
<th>Pt</th>
<th>Rh</th>
<th>Ru</th>
</tr>
</thead>
<tbody>
<tr>
<td>UNITS ppm</td>
<td>ppm</td>
</tr>
<tr>
<td>DETECTION</td>
<td>ppm</td>
</tr>
<tr>
<td>METHOD IC3R</td>
<td>IC3R</td>
</tr>
<tr>
<td>SN-67-B</td>
<td>ppm</td>
</tr>
<tr>
<td>SN-67-A</td>
<td>ppm</td>
</tr>
</tbody>
</table>
بررسی‌های زئو‌شیمیایی

نتایج آنالیز نشان دادند که ناهنجاری‌های اسپیسر جزئی از تراز‌های مابین 27 ppb و همچنین این که فاصله از جدی‌ترین مس مانند Fe مانند کوه زرتر حسیب، کندل اریا و حیاطه Oxide بسیار بالا است و این یکی از تفاوت‌های سنگین باعث می‌شود است.

با رسم نمودار طلا نسبت به سولفور یک روند مثبت مشاهده می‌شد (شکل ۲). بنابراین حضور طلا همراه کانی سازی سولفیدی تائید می‌شود. همچنین ارتباط مشابهی بین عنصر طلا و آرسن وجود دارد و با افزایش میزان آرسن، میزان طلا هم افزایش می‌یابد (شکل ۲). رسم نمودار Cu نسبت به Au ارتباط مستقیم بین این دو عنصر را نشان نداد (شکل ۳) که احتمالاً حاکی از این است که

![Au-S Diagram](image1.png)

شکل ۲ رابطه مستقیم بین Au-S در نمونه‌هایی از کانسک توده C

![Au-As Diagram](image2.png)

شکل ۳ رابطه مستقیم بین Au-As در نمونه‌هایی از کانسک توده C

![Cu-Au Diagram](image3.png)

شکل ۴ رابطه معکوس بین Cu-Au در نمونه‌هایی از کانسک توده C
کمیاب در سیستم‌های گرمایی غنی از فلوئور قابلیت انتقال پیدا می‌کند، کاهش F منجر به کم شدن می‌شود.[12] همچنین، گرمایی کمیاب در منطقه‌هایی که ممکن است ناحیه‌ای باز قابلیت انتقال پیدا می‌کند. با توجه به اینکه کاهش کمیاب شدت در منطقه‌های مختلف می‌تواند توسط مدل‌های مختلف محاسبه شود، در بررسی‌های مختلفی مراجعه شده است.

* * *

کلیه شناسی منطقه
کلیه‌ای در منطقه منطقه‌ای که ممکن است ناحیه‌ای باز قابلیت انتقال پیدا می‌کند. با توجه به اینکه کاهش کمیاب شدت در منطقه‌های مختلف می‌تواند توسط مدل‌های مختلف محاسبه شود، در بررسی‌های مختلفی مراجعه شده است.

* * *

شکل 5 روند تغییرات REE در منومنهایBH67A
پیریت در سنگ‌های کریته‌های است. مهم‌ترین بافت موجود دانایی و پراکندگی در زمینه مکتیت و هره سنج است و بافت‌های دیگر عبارتند از: بافت خسته آنگوری، بافت پوکیلیتی و PPL

پیرویت: پیریت فرآیند ترین کانی سولفیدی در مناطق مورد مطالعه است. بافت پیریت به نیز تنویع زیادی دارد و به اشکال مختلف دیده می‌شوند که همه این بافت‌ها حاصل جانشینی
بافت حاشیه‌ای که حامل تبدیل پروریتی به پریت است (شکل ۹) به طور کلی می‌توان پریت‌های موجود در منطقه را به چهار نسل تقسیم کرد: ۱- پریتهای اولیه: این پریتهای همزمان با تکمیل مگنتیت به وجود آمده‌اند و فضای کافی برای رشد آنها وجود داشته است، بنابراین اشکال کامل پوهیدرال دارند [۱۴]. علاوه بر این، انتظار می‌رود که پریتها نیز نسبت به پریتی در شرایط زیادی است. ۲- پریتهای نسل دوم: این پریتها پس از تکمیل مگنتیت ایجاد شده‌اند. این نسل قایق اشکال یوهیدرالد. ۳- پریتهای نسل سوم: پریتهای فاصله‌گذاری از اثر تغییرات شیمیایی محیط، پریتی از حاشیه شروع به تغییر ماهیت کرد و به پریتی تبدیل می‌شود. با پیشرفت این دگر‌سانی پروریتی کاملاً به پریتی مبدل می‌شود (شکل‌های ۱۱ و ۱۰). ۴- پریتهای راگچه‌ای: پریتهای راگچه‌ای از فراوان‌ترین پریتهای موجودند. این پریتهای فاصله‌گذاری خالی و درده و شکاف‌های موجود را بر می‌کند و کاهی پریتهای مراحل پیش را قطع می‌کند.

شکل ۹ بافت حاشیه‌ای پریتی در پیمای پروریتی، نور زاری‌تر و PPL.

شکل ۱۰ پریتهای یوهیدرال نسل اول (Pyr I) و پریتهای آن یوهیدرال نسل دوم (Pyr II) نور زارتر و PPL.
بررسی‌های زئوپتیمایی نشان داد که کانسک توده‌های C شمالی و باغک، پیروپتیت مورد توجه قرار گرفت. این کانسک‌ها خصوصیات ویژه‌ای نشان می‌دادند به طوری که دست‌های از آنها کاملاً درگیر شده و در حال تبدیل به پیرپتیت بودند و گاهی این تبدیل در مراحل نهایی بود و در همان مقطع بلورهای دیگری با سرشیپتیا پشتی یا پیروپتیت مشاهده می‌شد که برخوردگاه‌های تشکیل‌دهنده داشته و کاملاً سالم و بدون هر گونه آلتراسیون بود. بطوری که مرسد این کانسک احتمالاً ترکیب جدید

و ناشاکته با خصوصیات آن توزیع پیروپتیت بالینی باشند و با توجه به این که مقدار آن بیش از ۱۵ بود نمونه‌ای به منظور آنالیز انتخاب شده و مورد بررسی قرار گرفت. نتایج نشان داد XRD که در این نمونه دو نوع پیروپتیت با بزرگ‌تر ساختار متفاوت وجود دارد. (شکل ۱۲) با بررسی ابعاد شبکه (باراپرتر سلولی) معمول شد که این دو نوع پیروپتیت از ابعاد بلوری به هم متفاوتاند، به طوری که در پیروپتیت نوع اول ابعاد بلور به صورت

*۶*۲۷*۲* و *۲* و *۲* و در نوع دوم *۲**۸* و *۲**۸* هاست، ولی سیستم بلور در هر دو نمونه مشابهی تعیین شده است. (شکل ۱۲-۱۳) با توجه به مطالعه بالینی و بررسی قرآنی پیرپتیت دیلی

تواقت این دو نوع پیروپتیت نتیجه جالبی حاصل شد. بنابر نظریه زوزمن، (۱۹۶۴) افزایش کمبود آهن منجر به کاهش در پارامتر سلولی پیروپتیت می‌شود. بنابراین مشاهده نمی‌گردد که پیروپتیت نوع اول همه ابعاد کوچک‌تری دارد، مشابه آهن کمتری در ساختار آن وجود دارد. ولی پیروپتیت نوع دوم ابعاد بزرگ‌تر دارد و این زمان آهن موجود در آن شیب‌دار است.

شکل ۱۲ پیرپتیت نسل سوم حاصل از پیرپتیت، بتر باتالی و پیرپتیت با تصور برداری با پروتو X**

[3] Dow Russell J., Hitzman Murray, Geology of the Arizaro and lindero prospects, Salta province,
northwest Argentina: Mid-Miocene hydrothermal Fe oxide copper-gold mineralization, Hydrotermal Iron oxide copper-gold and related deposits: a global perspective,

