Geology, Mineralization, Alteration and Geochemical Exploration in Kajeh area, Ferdows

M. H. Karimpour¹, M. Khosravi¹, M. Pourkhosro¹, M. R. Haidarian Shahri¹, S. Saadat²

¹- Research center for ore deposit of Eastern Iran, Ferdowsi University of Mashhad
²- Dept. Geology, Mashhad Azad Islamic University

Email: mhkarimpour@yahoo.com

Abstract: The study area is situated within the Lut Block 50 Km northeast of Ferdows. The oldest exposed rocks are Cretaceous limestone. Kerman conglomerate cover the limestone. Dacite-rhyodacite lava and pyroclastic rocks erupted over Kerman conglomerate. Volcanic activities took place at different time in Tertiary. The composition ranges between trachyandesite, andesite, andesite-basalt and rhyolitic tuff. Sub-volcanic diorite, monzodiorite, monzonite, quartz monzonite and granite porphyry intruded the volcanic rocks during Oligo-Miocene time. Both volcanic and intrusive rocks are K-rich calc-alkaline to shoshonitic. Intrusive rocks (except granite porphyry) are I-type granite and belong to magnetite series. The pattern of spider diagrams both volcanic and intrusive rocks are similar. In comparison with mantle, They are enriched in Cs, K, Rb, La and Zr and depleted in Ba, P and Ti. Two groups of alteration zones are recognized: 1- silicified assemblages (silica-sericite-propylitic, silica-propylitic & silica-sericite). This group is related to granitic magma. 2- propylitic-sericitic-argillic group which are associated with monzonite, quartz monzonite-diorite intrusive rocks. Mineralization associated with granite porphyry show Mo, Ag, Pb and Zn anomalies. Mineralization associated with monzonite, quartz monzonite-diorite show signs of porphyry copper. They have Cu, Au, Pb and Zn geochemical anomalies.

Keywords: Kajeh, Ferdows, Geochemical exploration, alteration, mineralization.
زمینشناسی، کانی‌سازی، دگرگانی و دستاوردهای رئوپیمایی در منطقه کجه فردوس

محمدحسن کریپور، مجید خسروی، محمدرضا حیدریان شهری، سعید سعادت

1- مرکز تحقیقات دلپذیر معدنی ایران دانشگاه فردوسی مشهد
2- گروه زمینشناسی دانشگاه آزاد اسلامی مشهد

پست الکترونیکی: mhhkarimpour@yahoo.com

(دربای مقاله: ۱۳۸۷/۷/۱۷، نسخه نهایی: ۱۳۸۸/۱۳/۶)

چکیده: منطقه مطالعاتی کجه در ۵۰ کیلومتری شمال غربی فردوس و در زون زمین‌ساختی بلک لوت قرار گرفته است. اهمیت کردن، قدمت‌های سنگ‌های این منطقه را تشكیل می‌دهند. روی اهمیت کردن واحدهای سنگ‌های کرج آن تحقیقات قرار گرفته است که این را معادل کنگلوماری کرمان می‌دانند. گزاره تحقیق دستی رپورت‌ریوی کنگلوماری کرمان تحقیق شده‌اند. فعالیت‌های آتش‌نشانی به صورت تراکی آندزیت، کنگلوماری کرمان انتزاق، آندزیت، و تروف‌رویت (در مقطع زمین مختلط) در این منطقه معادل الیگو-موئسین با طیف ترسیمی دیوریت مزدورودیوریت، موئزونیت، کوارتز موئزونیت و گراینت پورفیری در سنگ‌های انتشافی نفوذ کرده‌اند. توده‌های نفوذی و سنگ‌های آتش‌نشانی از نوع ایستگی - قابلیت غنی از پتاسیم و گاهی شوونیتی، و توده‌های نفوذی (به استثنای گراینت پورفیری) از نوع سری مگنتیت و گرانیت‌های آن نوع A هستند. تندیز عواملی سنگ‌های آتش‌نشانی و توده‌های نفوذی مس از بالا به پایین به Cs، K، Rb، La، Sr مشابه به‌دستگردن در مقایسه با گوشه‌گی شدگی عناصر مشابه‌های می‌شود. دو Ba، P، Ti و کاهیدگی عناصر - پرولیتیک و سیلیس - سرپیت لایه‌های مسیلسیس (پرولیتیک، سرپیت) - یوپآزیتیک یک‌باره یا سرپیت حاصلی مجموعه‌ها از سنگ‌های بروپیتیک و سرپیتیتیک که به‌طور معمول مربوط به این منطقه و مربوط به کالس‌های رخی است. به این حال، کاربردی از کوارتز پورفیری در توده‌های نفوذی، Cu، Pb، Zn، Ag، و در کانه‌های مربوط به کوارتز موئزونیت، شیترالی از اسپورفیری و عناصر ثابته آبگیری Mo، Pb، Zn، Ag مشاهده شده‌اند.

کلمات کلیدی: کجه، فردوس، بررسی‌های رئوپیمایی، دگرگانی، کانی‌سازی

مقدمه
منطقه مطالعاتی کجه در ۵۰ کیلومتری شمال غربی فردوس و در زون زمین‌ساختی بلک لوت واقع شده است. گستره مورد مطالعه با وسعت حدود ۱۰۰ کیلومتر مربع، بین ۳۴°۴۳' - ۳۴°۴۱' طول شرقی و ۱۸°۰۷' - ۱۸°۱۳' عرض شمال قرار گرفته است (شکل ۱). بلک لوت با وزنه حدود ۹۰۰ کیلومتر و پهنای حدود ۲۰۰ کیلومتر، با مرز خارجی کالس نهان‌دان و حوضه فلیشی خاور ایران و مرز باختیز کالس نابیند و بلک ظیف مشخص می‌شود. مرز شمالی این بلک به کالس درون و مرز جنوبی آن به فرودنیت جامبیون محدود می‌شود. بلک لوت دارای پوست فار می‌باشد با ضخامت حدود ۴۰ کیلومتر است [۲۱]. از نظر چینش‌شناختی بلک لوت نمونه کامل توجهی دارد و در آن سنگ‌های بنیانی تا کوارتز رخیم می‌باشند. مهم‌ترین دهانه دوم و تعیین‌شناخت حاوی بلک لوت کوارتز بنیانی حاصل، آبگیری چبنه و چشمه‌گر بلک لوت ما می‌شود [۲۳]. اگرچه تاریخچه چبنه...
روش مطالبه
بردارش داده‌های ماهواره‌ای لندست+ این منطقه با نرم
ENVI 4.0
تهیه نقشه‌های زمین‌شناسی، کانی‌سازی و دگرگرایی با
مقياس 1:2000 (60 کیلومتر مربع).
بردارش مقطع تنگ‌های الگویی و بروزهای سنجکی از 150 نمونه برای
بررسی دقیق سنج‌شناسی و دگرگرایی.
بردارش 24 نمونه برای تهیه بلوک‌های صیقلی و مقطع
تانک صیقلی برای بروزهای کاننگاری.
بردارش 17 نمونه از به دست آمده‌ای رویدادهای.
بردارش 9 نمونه سنجی از زون‌های دگرگرای و کانی‌سازی
شده برای پی جویی‌های زنده‌یتی.
تجزیه نمونه‌ها با استفاده از روش جذب اتمی برای عنصر
در گروه زمین‌شناسی Cu, Zn, Pb, Ag, Sn, Sb, Mo
دانشگاه تبریز می‌باشد.
تجزیه نمونه‌ها برای طلا در آزمایشگاه سازمان زمین‌شناسی
کشور به روش جذب آمریکا کوره‌رگانیتی.
تجزیه نمونه‌هایی از توپه‌های نفوذی عنصر اصلی و جزئی
اندازه‌گیری دیده‌یتی منظم‌شکی در بلوک‌های نفوذی و
سنگ‌های آتش‌نشانی.

شناختی بلوک‌های از سیبیارزدیکی با ناحیه دیگر خرده
قازه ایران مرکزی نشان می‌دهد، ولی چهار و چهاری زمین‌شناسی
بر بلوک‌های حاکم‌اند.
الف- تاثیر درون‌تن بروزهای سنجک‌های سیبرین بر سنگ‌های
کوه‌های از تریاس میانی.
ب- چین خورگانی، انقیض‌شکی و بروزهای مشابه و ضریب
میانی (سنجک‌های میانی) به ویژه در نواحی دم‌سر و چهارفریخت
که با پایداری و سخت‌بوده بلوک همراه است.
ج- فراوانی سنگ‌های انقیض‌شکی ترشیاری به ویژه انسان، که با
داشت ضخامت 2000 متر بیش از نیمی از بلوک‌های دیگری.
پوشاند.
د- نهشته‌های دریچه‌ای نتیجه افکن پلوس- پلیستوس نام
سازند لوت که نشانگر عملکرد ضعیف فاز پسین رخداد چنین
خودگردگی در این بلوک است.

نخستین علل لازم برای میدانی در بلوک لوت مربوط به دوره‌ای
(170 تا 165 میلیون سال) است که به صورت انواع توپه‌های
گرایننی رخته‌مان دارد، [41] این در حالی است که این فعالیت
در شمال بلوک لوت مربوط به گرایننی فوقایی (157 میلیون
سال) است [51]. مطالعاتی که توسط ترکیب در بلوک لوت
صوت گرفت، حاکی از کانی‌سازی منطبق است [67].

شکل 1 موقعیت و راه دسترسی به منطقه مطالعاتی [11].

[Downloaded from ijcm.ir on 2022-02-23]
شدهان (شکل 2). اندازه و درصد کانی‌های قابل تشخیص در جدول (1) گزارش شده است.

ترکیب آنژیتی: این سنگ‌های با مساحت حدود ۳/۳ کیلومتر مربع روی واقع داسیتی قرار گرفته و به دو صورت گدازه و نمودار ارتفاعات رحمی دیده می‌شوند (شکل ۳). اندازه و درصد کانی‌های قابل تشخیص در جدول (1) گزارش شده است.

آنژیتی‌های دوگانه و ترکیبی-پالازیت: این واحدها به صورت نواری در مرکز منطقه به سمت شمال غرب کشیده شده است (شکل ۳). وسعت این واحدهای حدود ۶ کیلومتر مربع است.

بافت‌ها ترکیبی و در نمونه‌های سه‌گانه‌ای رنگ دیده می‌شوند. اندازه و درصد کانی‌های قابل تشخیص در جدول (1) گزارش شده است.

لیستک توف: این واحدها به صورت حدود ۳/۶ کیلومتر مربع در بخش‌های مرکزی و شمال باختری منطقه رخنمون دارند. با توجه به قطعات سنگی این واحدها به لحاظ ساختار و بافت جز توقف سنگی به حساب می‌آیند. مقدار و درصد کانی‌های قابل تشخیص در جدول (1) گزارش شده است.

زمین‌شناسی منطقه سنگ شناختی قدیمی‌ترین سنگ‌های این منطقه عبارتند از آهک‌های کرنسه که در دو فصل‌های رودیست (شاخه کرنسه فوقانی) و کریتونید فراون بوده و در شرق منطقه رخندیده‌اند. روی آهک‌های کرنسه، واحدهای سنگ‌ریزی‌پیشین قرار گرفته‌اند که اینها به عنوان کنگلومراها بررسی می‌شوند. برخی از آنها از گذرگذاری کرمان می‌دانند. شکل‌های اندازه و درصد منطقه از ۰ تا ۷۰ متر در تغییر است. قطعات تشدیده‌ای این کنگلومراها به صورت مربوط به آهک کرنسه مربوط می‌شود. این قطعات گردشی شگفت‌خوب تا متوسط و جورشگانی ضعیف تا متوسط‌نشان می‌دهند.

واحدهای دیگر زمین‌شناسی عبارتند از:

داسیت، روئوداسیت: این واحدهای سنگ‌های آدنزای و گاهی به صورت گدازه، با شکل‌های کنگلومرا باشند در منطقه دارند (۳/۸ کیلومتر مربع). این سنگ‌های روی آهک‌های کرنسه و واحدهای سنگ‌ریزی‌پیشین قرار گرفته‌اند و در بعضی نقاط به شدت سپیلیسی بوده‌اند.

شکل ۲ نقشه زمین‌شناسی منطقه کجه [۱۰].
جدول 1: ترتیب کانال‌های سنگهای انرژی‌شناسی منطقه‌کجه

<table>
<thead>
<tr>
<th>کانال اویاک</th>
<th>پرتوسکن</th>
<th>کوارتز</th>
<th>آکائی فلدسپات</th>
<th>پلاژوکلاز</th>
<th>نام واحد</th>
</tr>
</thead>
<tbody>
<tr>
<td>%2-3</td>
<td>-</td>
<td>0.4-0.8 mm</td>
<td>0.4-1 mm</td>
<td>0.2-1.4 mm</td>
<td>دانه‌س، روداستی</td>
</tr>
<tr>
<td>%1-2</td>
<td>%5-10</td>
<td>0.4-0.8 mm</td>
<td>0.4-1.5 mm</td>
<td>%20-25</td>
<td>تراکی انزدیت</td>
</tr>
<tr>
<td>%4-5</td>
<td>%5-20</td>
<td>%5-15</td>
<td>%5-25</td>
<td>%55-55</td>
<td>هورنلنگ انزدیت - بارالت</td>
</tr>
<tr>
<td>%2-3</td>
<td>%5-8</td>
<td>0.1-0.2 mm</td>
<td>%8-2 mm</td>
<td>0.1-0.2 mm</td>
<td>لیتیک نوب</td>
</tr>
</tbody>
</table>

جدول ۲ ترتیب کانی‌شناسی نتودهای بنیاده منطقه کجه

<table>
<thead>
<tr>
<th>کد</th>
<th>بیوکسی</th>
<th>پیروکسن</th>
<th>کوارتز</th>
<th>کلیسای قلیبی</th>
<th>کوارتز</th>
<th>پایاییکورا</th>
<th>نام واحده</th>
<th>بهزیستی</th>
</tr>
</thead>
<tbody>
<tr>
<td>%3-1</td>
<td>-</td>
<td>%3-10</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%2-3</td>
<td>0.5-1.5 mm</td>
<td>40-50</td>
</tr>
<tr>
<td>%3-5</td>
<td>0.2 mm</td>
<td>%5</td>
<td>1 mm</td>
<td>%2-3</td>
<td>1 mm</td>
<td>%4-7</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>%2-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%10-15</td>
<td>-</td>
<td>0.5-1.3 mm</td>
<td>%7-15</td>
<td>1-1.5 mm</td>
</tr>
<tr>
<td>%3-6</td>
<td>0.1</td>
<td>%4-6</td>
<td>%5-8</td>
<td>%10-15</td>
<td>-</td>
<td>0.2-1.3 mm</td>
<td>%10-15</td>
<td>0.2-2 mm</td>
</tr>
<tr>
<td>%2-3</td>
<td>-</td>
<td>-</td>
<td>0.5-1.5 mm</td>
<td>%4-6</td>
<td>0.5-1.5 mm</td>
<td>%8-15</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>%2-4</td>
<td>-</td>
<td>%0-3</td>
<td>%1-4</td>
<td>%15-17</td>
<td>-</td>
<td>0.4-1.6 mm</td>
<td>%25-35</td>
<td>-</td>
</tr>
<tr>
<td>%1-3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>%15-20</td>
<td>-</td>
<td>0.3-1 mm</td>
<td>%10-12</td>
<td>-</td>
</tr>
</tbody>
</table>

زمین‌شناسی ساختاری منطقه
با مطالعات مرحله‌ای روی انواع شکستگی‌ها (گسل و درده) در توان یپ بر که منطقه کجه از هاری محالی، ژین ساختی، پیشده، و به شدت تصویرگی شده است. در این منطقه، سه گسل مهمی دارند: گسل اصلی و دو گسل حسیمی. این گسل با طول حدود ۴.۵ کیلومتر و عرض حدود ۵۰ متر، می‌تواند گسل مورد مطالعه است زیرا

گسل اصلی: این گسل با طول حدود ۴.۵ کیلومتر و عرض حدود ۵۰ متر، منطقه مورد مطالعه است زیرا

پیشده: این گسل با طول حدود ۴.۵ کیلومتر و عرض حدود ۵۰ متر، منطقه مورد مطالعه است زیرا

گسل حسیمی: این گسل با طول حدود ۴.۵ کیلومتر و عرض حدود ۵۰ متر، منطقه مورد مطالعه است زیرا
در نمودار شکل (۷) توده‌های نفوذی و سنگ‌های آتش‌نشینی
از نوع آهکی- قلبی‌انگی از بنامی و برخی شویندیته هستند. نمودار عکس‌های سنگ‌های آتش‌نشینی و توده‌های نفوذی نسبت به گوشه‌های شمی‌شناسی (شکل‌های ۸ و ۹). نفاوتی
بنیادی بین دو نمودار مشاهده نمی‌شود. در مقایسه با گوشه،
غی بندی عناصر Cs، K، Rb، La و Zr غنی شدگی عناصر Ba، P، Ti
مشاوه به شو (شکل‌های ۸ و ۹).

سنگ‌شناسی

ترکیب شیمیایی سنگ‌های آتش‌نشینی و توده‌های نفوذی در
نمودار کاکس [۹] ترسیم شده‌اند (شکل‌های ۴ و ۵). برای این
نمودار شاند توده‌های نفوذی (مثلث) بیشتر متالومینوس و
سنگ‌های آتش‌نشینی بیشتر برپتالومینوسند (شکل ۶).

شکل ۴: نام‌گذاری سنگ‌های آتش‌نشینی [۹].۱۰۱.

شکل ۵: نام‌گذاری توده‌های نفوذی [۹].۱۱۱.
شکل 6 نمودار شاند برای تعیین شاخه اومینیوم [۱۰-۱۲].

شکل 7 نمودار پیکولی و تیلور برای تعیین سری تولیدی آت از آهک - قلبی [۱۰، ۱۱ و ۱۲].

شکل 8 نمودار عکبوتی سنگ‌های اشکافی [۱۴].
درگ سانی و کاتی سازی بر پایه منطقه نبندی، شکل، ابعاد و ارتباط آنها با توده‌های نفوذی و گسل‌ها. حداکثر دو مجموعه از زون‌های درگ سانی در منطقه رخخمون دارند. 1- مجموعه زون‌های سپیلسی سپیلس-سرسیست - پروبیلیتیک سپیلس-سرسیست - پروبیلیتیک و سپیلس-سرسیست) در شرق نشته در رستای گسل رحیمی و گسل کجاه (شکل 10) این مجموعه با توده گرانیت پورفیری که در خاور نشته در شمال جاده کجاه رخخمون دارد و استفاده از 2- مجموعه درگسانی پروبیلیتیک سرسیستیک، آزولیتیک و با توده‌های موئونیت و گوانیت موئونیت در ارتباط است. با مجموعه توده‌های نفوذی موئونیت - کوارتز موئونیت و اولین اپیورنیت در ارتباط هستند.

drag sanie va kati sazay

پرور و کرینات، سیلیکاته، اکسید و سولفویدهای مس به صورت تناوبی در سطح زمین مشاهده می‌شوند. در راستای گسل رحمی کانی سازی مس به صورت رگه‌ای تشکیل شده است. دو رگه نظریه مواری در بخش جنوبی منطقه رحمون دارند. رگه اصلی با راستای N50E حدود 2 کیلومتر طول دارد. آثار شداید فرآیند به همراه آثار معدن‌کاری جدید (تراشة و چاهک) در محل دو رگه اصلی و فرعی دیده می‌شوند که نشان از سابقه طولانی بهره برداری در این منطقه است [15].

می‌رسد که در این منطقه بخش فوقانی کانی سازی به گرانیت پورفری وابسته باشد که پیشنهاد می‌شود مورد بررسی و مطالعه بیشتری قرار گیرد. بررسی‌ها نشان داده‌اند که کانی سازی مس کوارتز مولتیت و مولتیتی احتمالاً به نوع پورفری وابسته باشد.

در بااخت و مرکز منطقه (شکل 10)، کانی سازی به حالت افغان و داربستی در توده‌های نفوذی و سنتگه‌ای آتش‌نشانی رخ داده است. پریت و کالکوپیریت به صورت اولیه و اکسیدهای شکل 10 نشان دگرگویی منطقه کجه [1 و 8].
نقده زئوئیمی سی نشان می‌دهد که نابهنجاری‌های مس در غرب مکز و بخش جنوبی منطقه براکنده شده‌اند (جدول 1). میزان مس بین 12 ppm تا 45 ppm یافت می‌گردد (جدول 3). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهند. نابهنجاری در بخش شمال و شمال‌شرقی و در گستره مزاحم Mo ورودی دیده می‌شود (شکل 12). میزان Mo بین 1 ppm و pb, zn, ag بین 80 ppm تا 400 ppm میزان Pb, Zn, Ag به گونه‌ای است که در بخش‌های شرقی و شمال‌شرقی مزاحمی شده‌اند (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهند. نابهنجاری در بخش شمال و شمال‌شرقی و در گستره مزاحم Mo ورودی دیده می‌شود (شکل 12). میزان Mo بین 1 ppm و pb, zn, ag بین 80 ppm تا 400 ppm میزان Pb, Zn, Ag به گونه‌ای است که در بخش‌های شرقی و شمال‌شرقی مزاحمی شده‌اند (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهد (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهند. نابهنجاری در بخش شمال و شمال‌شرقی و در گستره مزاحم Mo ورودی دیده می‌شود (شکل 12). میزان Mo بین 1 ppm و pb, zn, ag بین 80 ppm تا 400 ppm میزان Pb, Zn, Ag به گونه‌ای است که در بخش‌های شرقی و شمال‌شرقی مزاحمی شده‌اند (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهد (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهند. نابهنجاری در بخش شمال و شمال‌شرقی و در گستره مزاحم Mo ورودی دیده می‌شود (شکل 12). میزان Mo بین 1 ppm و pb, zn, ag بین 80 ppm تا 400 ppm میزان Pb, Zn, Ag به گونه‌ای است که در بخش‌های شرقی و شمال‌شرقی مزاحمی شده‌اند (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهد (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهند. نابهنجاری در بخش شمال و شمال‌شرقی و در گستره مزاحم Mo ورودی دیده می‌شود (شکل 12). میزان Mo بین 1 ppm و pb, zn, ag بین 80 ppm تا 400 ppm میزان Pb, Zn, Ag به گونه‌ای است که در بخش‌های شرقی و شمال‌شرقی مزاحمی شده‌اند (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهد (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهند. نابهنجاری در بخش شمال و شمال‌شرقی و در گستره مزاحم Mo ورودی دیده می‌شود (شکل 12). میزان Mo بین 1 ppm و pb, zn, ag بین 80 ppm تا 400 ppm میزان Pb, Zn, Ag به گونه‌ای است که در بخش‌های شرقی و شمال‌شرقی مزاحمی شده‌اند (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهد (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهند. نابهنجاری در بخش شمال و شمال‌شرقی و در گستره مزاحم Mo ورودی دیده می‌شود (شکل 12). میزان Mo بین 1 ppm و pb, zn, ag بین 80 ppm تا 400 ppm میزان Pb, Zn, Ag به گونه‌ای است که در بخش‌های شرقی و شمال‌شرقی مزاحمی شده‌اند (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهد (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهند. نابهنجاری در بخش شمال و شمال‌شرقی و در گستره مزاحم Mo ورودی دیده می‌شود (شکل 12). میزان Mo بین 1 ppm و pb, zn, ag بین 80 ppm تا 400 ppm میزان Pb, Zn, Ag به گونه‌ای است که در بخش‌های شرقی و شمال‌شرقی مزاحمی شده‌اند (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهد (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهند. نابهنجاری در بخش شمال و شمال‌شرقی و در گستره مزاحم Mo ورودی دیده می‌شود (شکل 12). میزان Mo بین 1 ppm و pb, zn, ag بین 80 ppm تا 400 ppm میزان Pb, Zn, Ag به گونه‌ای است که در بخش‌های شرقی و شمال‌شرقی مزاحمی شده‌اند (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهد (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهند. نابهنجاری در بخش شمال و شمال‌شرقی و در گستره مزاحم Mo ورودی دیده می‌شود (شکل 12). میزان Mo بین 1 ppm و pb, zn, ag بین 80 ppm تا 400 ppm میزان Pb, Zn, Ag به گونه‌ای است که در بخش‌های شرقی و شمال‌شرقی مزاحمی شده‌اند (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهد (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهند. نابهنجاری در بخش شمال و شمال‌شرقی و در گستره مزاحم Mo ورودی دیده می‌شود (شکل 12). میزان Mo بین 1 ppm و pb, zn, ag بین 80 ppm تا 400 ppm میزان Pb, Zn, Ag به گونه‌ای است که در بخش‌های شرقی و شمال‌شرقی مزاحمی شده‌اند (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهد (شکل 11). نتایج تجزیه مس با زئوئیمی در کاپسالات و توده‌های نفوذی همکانی خوبی نشان می‌دهند. نابهنجاری در بخش شمال و شمال‌شرقی و در گستره مزاحم Mo ورودی D)}

شکل 11 نقده محل و نتایج به نشانه‌های روادیده‌ای بر حسب (ppm) [18]
جدول ۲ نتایج تجزیه شیمیایی نمونه‌های سنگی منطقه کجه [۱۸]

<table>
<thead>
<tr>
<th>نمونه</th>
<th>X</th>
<th>Y</th>
<th>Cu (ppm)</th>
<th>Zn (ppm)</th>
<th>Pb (ppm)</th>
<th>Ag (ppm)</th>
<th>Sn (ppm)</th>
<th>Sb (ppm)</th>
<th>Mo (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>kag-1</td>
<td>56</td>
<td>77</td>
<td>120.1</td>
<td>23.0</td>
<td>19.0</td>
<td>12.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-2</td>
<td>69</td>
<td>87</td>
<td>30.7</td>
<td>53.9</td>
<td>83.4</td>
<td>5.9</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
</tr>
<tr>
<td>kag-3</td>
<td>58</td>
<td>98</td>
<td>52.4</td>
<td>59.6</td>
<td>82.3</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-4</td>
<td>71</td>
<td>100</td>
<td>110.0</td>
<td>130.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>kag-5</td>
<td>97</td>
<td>109</td>
<td>74.7</td>
<td>44.7</td>
<td>89.0</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-6</td>
<td>92</td>
<td>110</td>
<td>31.8</td>
<td>87.6</td>
<td>223.6</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-7</td>
<td>73</td>
<td>88</td>
<td>34.7</td>
<td>237.0</td>
<td>15.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>kag-8</td>
<td>83</td>
<td>90</td>
<td>55.3</td>
<td>95.3</td>
<td>10.8</td>
<td>10.8</td>
<td>10.8</td>
<td>10.8</td>
<td>10.8</td>
</tr>
<tr>
<td>kag-9</td>
<td>98</td>
<td>92</td>
<td>100.0</td>
<td>89.2</td>
<td>23.0</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-10</td>
<td>92</td>
<td>92</td>
<td>100.0</td>
<td>89.2</td>
<td>23.0</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-11</td>
<td>87</td>
<td>89</td>
<td>193.5</td>
<td>54.0</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
<td>5.2</td>
</tr>
<tr>
<td>kag-12</td>
<td>94</td>
<td>94</td>
<td>183.8</td>
<td>431.2</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
</tr>
<tr>
<td>kag-13</td>
<td>77</td>
<td>77</td>
<td>23.0</td>
<td>47.9</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
<td>14.3</td>
</tr>
<tr>
<td>kag-14</td>
<td>98</td>
<td>98</td>
<td>150.0</td>
<td>37.6</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>kag-15</td>
<td>92</td>
<td>93</td>
<td>19.5</td>
<td>74.0</td>
<td>19.5</td>
<td>19.5</td>
<td>19.5</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td>kag-16</td>
<td>94</td>
<td>94</td>
<td>128.0</td>
<td>81.7</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-17</td>
<td>83</td>
<td>83</td>
<td>28.5</td>
<td>84.8</td>
<td>84.8</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-18</td>
<td>89</td>
<td>89</td>
<td>26.9</td>
<td>24.5</td>
<td>155.1</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-19</td>
<td>96</td>
<td>96</td>
<td>541.1</td>
<td>49.9</td>
<td>43.5</td>
<td>43.5</td>
<td>43.5</td>
<td>43.5</td>
<td>43.5</td>
</tr>
<tr>
<td>kag-20</td>
<td>91</td>
<td>91</td>
<td>22.0</td>
<td>40.0</td>
<td>19.5</td>
<td>19.5</td>
<td>19.5</td>
<td>19.5</td>
<td>19.5</td>
</tr>
<tr>
<td>kag-21</td>
<td>82</td>
<td>82</td>
<td>178.5</td>
<td>79.1</td>
<td>79.1</td>
<td>79.1</td>
<td>79.1</td>
<td>79.1</td>
<td>79.1</td>
</tr>
<tr>
<td>kag-22</td>
<td>76</td>
<td>76</td>
<td>27.6</td>
<td>79.9</td>
<td>17.6</td>
<td>17.6</td>
<td>17.6</td>
<td>17.6</td>
<td>17.6</td>
</tr>
<tr>
<td>kag-23</td>
<td>79</td>
<td>79</td>
<td>71.2</td>
<td>31.2</td>
<td>161.2</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-24</td>
<td>75</td>
<td>75</td>
<td>36.6</td>
<td>18.5</td>
<td>36.6</td>
<td>36.6</td>
<td>36.6</td>
<td>36.6</td>
<td>36.6</td>
</tr>
<tr>
<td>kag-25</td>
<td>95</td>
<td>95</td>
<td>20.6</td>
<td>20.6</td>
<td>20.6</td>
<td>20.6</td>
<td>20.6</td>
<td>20.6</td>
<td>20.6</td>
</tr>
<tr>
<td>kag-26</td>
<td>84</td>
<td>78</td>
<td>116.3</td>
<td>146.4</td>
<td>146.4</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-27</td>
<td>80</td>
<td>74</td>
<td>138.7</td>
<td>175.1</td>
<td>175.1</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-28</td>
<td>78</td>
<td>78</td>
<td>76.0</td>
<td>88.5</td>
<td>88.5</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-29</td>
<td>92</td>
<td>92</td>
<td>36.6</td>
<td>98.7</td>
<td>98.7</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-30</td>
<td>79</td>
<td>79</td>
<td>23.7</td>
<td>92.7</td>
<td>92.7</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-31</td>
<td>76</td>
<td>76</td>
<td>44.1</td>
<td>44.1</td>
<td>44.1</td>
<td>44.1</td>
<td>44.1</td>
<td>44.1</td>
<td>44.1</td>
</tr>
<tr>
<td>kag-32</td>
<td>79</td>
<td>79</td>
<td>138.8</td>
<td>138.8</td>
<td>138.8</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-33</td>
<td>77</td>
<td>77</td>
<td>55.0</td>
<td>114.9</td>
<td>114.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-34</td>
<td>79</td>
<td>79</td>
<td>134.9</td>
<td>139.3</td>
<td>139.3</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-35</td>
<td>75</td>
<td>75</td>
<td>39.9</td>
<td>74.0</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
<td>9.5</td>
</tr>
<tr>
<td>kag-36</td>
<td>79</td>
<td>79</td>
<td>53.9</td>
<td>53.9</td>
<td>53.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-37</td>
<td>76</td>
<td>76</td>
<td>60.0</td>
<td>120.0</td>
<td>120.0</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-38</td>
<td>90</td>
<td>90</td>
<td>74.3</td>
<td>93.9</td>
<td>93.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-39</td>
<td>77</td>
<td>77</td>
<td>33.0</td>
<td>33.0</td>
<td>33.0</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-40</td>
<td>75</td>
<td>75</td>
<td>37.0</td>
<td>37.0</td>
<td>37.0</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-41</td>
<td>80</td>
<td>80</td>
<td>30.0</td>
<td>30.0</td>
<td>30.0</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-42</td>
<td>78</td>
<td>78</td>
<td>34.8</td>
<td>113.1</td>
<td>113.1</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-43</td>
<td>76</td>
<td>76</td>
<td>17.1</td>
<td>17.1</td>
<td>17.1</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-44</td>
<td>79</td>
<td>79</td>
<td>33.7</td>
<td>114.9</td>
<td>114.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-45</td>
<td>77</td>
<td>77</td>
<td>34.3</td>
<td>34.3</td>
<td>34.3</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-46</td>
<td>79</td>
<td>79</td>
<td>31.9</td>
<td>34.9</td>
<td>34.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
<tr>
<td>kag-47</td>
<td>77</td>
<td>77</td>
<td>10.0</td>
<td>88.8</td>
<td>88.8</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
<td>8.9</td>
</tr>
</tbody>
</table>
جدول ۳

<table>
<thead>
<tr>
<th>نمونه</th>
<th>X</th>
<th>Y</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAG-54</td>
<td>۱۸۶</td>
<td>۲۵۴</td>
<td>۵۷۳</td>
</tr>
<tr>
<td>KAG-49</td>
<td>۳۲۸</td>
<td>۲۱۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-50</td>
<td>۲۸۸</td>
<td>۱۸۴</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-52</td>
<td>۳۸۲</td>
<td>۲۴۷</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-53</td>
<td>۴۲۶</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-54</td>
<td>۴۴۹</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-55</td>
<td>۴۴۹</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-56</td>
<td>۴۵۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-57</td>
<td>۴۵۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-58</td>
<td>۴۵۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-59</td>
<td>۴۵۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-60</td>
<td>۴۵۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-61</td>
<td>۴۵۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-80</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-81</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-82</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-83</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-84</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-1</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-2</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-3</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-4</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-5</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-7</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-8</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-9</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-10</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-11</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-12</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-13</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-14</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-15</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-16</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-17</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KCG-18</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
</tbody>
</table>

جدول ۴

<table>
<thead>
<tr>
<th>نمونه</th>
<th>X</th>
<th>Y</th>
<th>Au (ppb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAG-54</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-49</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-28</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-55</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-39</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-41</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
<tr>
<td>KAG-49</td>
<td>۶۷۰</td>
<td>۱۸۰</td>
<td>۱۸۰</td>
</tr>
</tbody>
</table>
برداشت‌ها و پیشنهادها

از آن‌جا که در کنکلوم‌های سوارند کرمان (کروناسه فولکلی-پالتوس تحتان) سنگ‌های آتش‌نشانی و توده‌های نفوذی مشاهده شده، فاصلهگذاری‌های به صورت ویژه‌ای از حدود انوس شروع و در طول ترسیه‌های در مقاطع زمینی مختلف ادامه داشته است. توده‌های دیوربیری و کوارتز موزونیتی، به احتمال زیاد در الگوسن- میونس نفوذ کرده و در مقاطع زمینی بعد نیز این فراوانی‌ها ادامه داشته است.

توده‌های آدرین نیمه عمیق متعددی در این گستره برای اولین بار معرفی شدند. این توده‌ها از طرف ترکیبی هورنبلند دیوربیری، هورنبلند بیونیت دیوربیری، هورنبلند بیوئیت کوارتز موزونیتی بورفییری، بیوئیت کوارتز موزونیتی
شناختی و اندازه‌گیری از زون دگرسانی ۱- مجموعه زون-های سلیس (سلیس-پربوران، زون سلیس-پربوران، زون سلیس-پربوران) و کلیه مراحل تشکیل شماند غربفرش، پایان‌الامام کارشناسی ارشد زمین‌شناسی اقتصادی، گروه زمین‌شناسی دانشگاه فردوسی مشهد (۱۳۸۵).

[10] خراشی م.، پتروپرایزی، زونوماتی و پترولوژی سنگ‌های آشفتگی غرب-فرودن، پایان‌الامام کارشناسی ارشد پتروپرایزی، دانشگاه تربیت معلم تهران، ۱۴۵ صفحه (۱۳۷۸).

[11] کریپسیپور م.، عالی‌نژاد س.، سعیدی‌نژاد آ.، کلیه م.، پتولوژی، پتروپرایزی و کلیه سنگ‌های آشفتگی غرب-فرودن، دانشگاه تربیت معلم تهران، ۱۴۵ صفحه (۱۳۷۸).

[16] بقیلی و دهنوی، تپه‌های اکتشافی و اکتشافرسانی در ناحیه آذربایجان شرقی، ۱۳۸۱ صفحه (۱۳۸۱).