Minerals boundary detection in petrographic thin sections image using ArcGIS software

A. Hassanpour, A. Kananian, M. A. Barghi

School of Geology, Faculty of Sciences, University of Tehran, Iran
Email: Kananian@khayam.ut.ac.ir

(Received: 23/9/2008, in revised form: 7/12/2008)

Abstract: In this paper, a new method for mineral boundary detection is proposed using a model prepared in ArcGIS ModelBuilder tool. Required data for this method are gray scale images taken from petrographic thin sections. The images are captured in 19 numbers through 90° polarizers and lambda plate rotation with 5° intervals while the microscope table is fixed. Mineral boundaries are detected using the ArcGIS software by comparison of colour intensity amongst the adjacent minerals in sequential images. The presented method is fast and accurate to detect favorite grain boundaries from thin sections, and is able to create a powerful database containing grain shape characteristics. Petrographic study on four rock samples demonstrates that the results of grain boundary detection by the model without operator intervention, are more than 80 percent correlated with manual boundary detection method.

Keywords: Boundary detection, ArcGIS ModelBuilder, Thin section, Image processing, Petrography.
مرزبندی کانی‌ها در تصویر مقطع سنگ‌شناختی با استفاده از نرم‌افزار ArcGIS

عبدالله حسین‌پور، علی کنانیان، محمدعلی برقی

دانشکده زمین‌شناسی، پردیس علوم، دانشگاه تهران
Kananian@Khayam.ut.ac.ir

(دریافت مقاله: 87/09/17، تاریخ نهایی: 87/09/17)

چکیده: در این کار به‌پوشه، برای مرزبندی کانی‌ها در مقاطع نازک سنگ‌شناختی، روش جدید بر مبنای طراحی مدل در محیط ArcGIS ModelBuilder نرم‌افزاری سنگ‌شناختی تهیه می‌شود. در حالیکه مرز تکرار میکروسکوپی تاکتیک است، تعیین 19 مقطع عکس در هر 5 درجه با چرخاندن قطب‌ندازه و تبعیض برای نصب 90 درجه‌ای رنگ‌گذاری می‌شود. مز کانی‌ها با استفاده از نرم‌افزار ArcGIS سنگ‌شناختی تشریح و تحلیل ویژگی‌های آنها است. ویژگی‌های سطح بالایی این کانی‌ها اخبار کن. بررسی‌های سنگ‌شناختی پژوهشگری بر روی چهار نمونه سنگی نشان داد که نتایج حاصل از مرزبندی با استفاده از مدل دور دخالت کاربری، بیش از 80 درصد با نتایج حاصل از مرزبندی دستی متفاوت‌دارد.

واژه‌های کلیدی: مرزبندی، مرزبندی ArcGIS ModelBuilder، مقطع نازک، بردارش تصویر سنگ‌شناختی.

1- مقدمه

هدف اساسی روش‌های تحلیل مقاطع با استفاده از کامپیوتری سنگ‌شناختی نوب کانی‌ها بروز خودکار در تصاویر رقمی مقاطع نازک سنگ‌شناختی برای تجزیه و تحلیل ویژگی‌های آنها است. یکی از مراحل اصلی انجام این کار تعیین حکمرز دانه‌ها در مقاطع نازک سنگ‌شناختی است.

میدان مدرج با لغزش بازدهی ارتشمند نظر: شکل، آتاتورک، نوب کانی‌ها، درصد اجزای تحلیلی سنگ‌شناختی، سیستم‌های انرژی پیشرفته، تفاوت ضرایب سطح بالا و سطح ارزی اجازه تحلیل دهنده دهنده‌های میکروسکوپی است. تکرار دهنده دهنده‌های شکست را در بر دارد [1]. برای به دست آوردن طرز دوباره قطعیت نوب کانی‌ها در مقاطع سنگ‌شناختی چربی کردن، برای به دست آوردن طرح فلزات بهبود دهنده در تهیه می‌شود. استفاده کردن. برای به دست آوردن طرح فلزات بهبود دهنده کن.
مکددگر تفکیک بازپرید. در سور دوبار تکمیلی، رنگ تداخلی عامل مورث پرای جدایی کلپه‌ای است. عکس‌برداری از مقاطع میکروسکوپی به منظور مزیندی دانه‌ها. بیشتر به سه روش است. یا یو پا، و این دیجیتال می‌گیرد.

یک اندازه‌گیری مرجع رنگ پرای تشخیص مرز دانهها استفاده می‌شود. [۲] میزان مزیندی در این روش، چند میزان دانه‌ها از ابزاری این روش این است که هم‌سازی دانه نامناسب، رنگ تداخلی مقاطع مادی تداخلی و میکرواتیک تست‌های طبق‌پذیری نیست. در نتیجه، رنگ دیده شوند. حالت‌های یاد چند جنگه و دو دانه مجار که نامناسب استفاده می‌شود. [۲] در این روش یا استفاده از یک فیلترا نرم‌افزایی فیلتر کننده‌ها. حالت‌های نمایش داده شوند. در پایان ادامه، مزیندی رنگ رنگ نواحی باشند. کارایی این روش به شدت بالایی.

۱- Canny
۲- Undulose extinction
نمایش کامل و روش‌بندی بیشینه را نشان دهد، تا مرزینه دانه‌ها با کمترین خطای هواگردانش بتواند. برای مرزینه عکس‌های مقاطع نازک سنج‌شناختی معمول به سه شبکه عمل شده است:

1- تشخیص کانال دانه‌ها [6 تا 9]
2- تشخیص سطح دانه‌ها [10]
3- تکبیری از هر دو روش [11]

علاوه بر روش تیپه عکس و روش مرزینه، استفاده از برنامه‌های نرم‌افزاری مناسب نیز اهمیت زیادی دارد. با تلفیق نتایج حاصل از به‌کارگیری نرم‌افزارهای متغیف نیز می‌توان عمل مرزینه را انجام داد. اما یکی از نقاط مهم مراحل مرزینه‌ای در رک

شکل 1: دانه‌های 1 و 2 با دو سمت‌گیری پلورشناختی متفاوت، در برجسته‌گیری از کناری‌های مایع (این برجسته‌گیری با اساس رگ تداخلی حاصل از کانی کوارتز با محور نوری افقی و راستای 130 درجه، در شرایط نور دوب طیف‌بندی به همراه تغییر لازم منطقه‌بندی شده است) به‌نوازی در آمد. این شکل مشاهده می‌شود که علیرغم تلفات در سمت‌گیری پلورشناختی دانه‌های 1 و 2، رگ تداخلی هر دو دانه سرخ سری اول است.

1-Stereogram
در این کار پژوهشی، عکس ها به روش پیوسته و مزیتی بر اساس تشخیص کناره داده صورت گرفته است. نخست در ArcGIS که در نرم افزارهای تحلیل عکس به صورت جدایی وجود دارد، اما با اجتماع تمام این توابع در محیط Nرم افزاری ArcGIS، کاربر می‌تواند بدون مراحله به جنگین Nرم افزار ArcGIS مزیتی دانه‌ها را با سهولت بیشتری انجام دهد. ضمنا، انتقال داده‌ها از Nرم‌افزار به Nرم‌افزار دیگر (که خود سبب بروز اختلاف ناپایداری در محیط Nرم‌افزار و نیز اعمالات Nرم‌افزار به صورت خودکار، مثلاً با استفاده از طریق Nرم‌افزار ArcGIS ModelBuilder

![Diagram](image-url)

شکل ۲ مدل ارائه‌شده در این کار پژوهشی به‌چهار بخش یکل تکمیل است. ۱. در این بخش از مدل، نخست آرایش عکس‌ها از‌آغاز می‌باشد و سپس سبب عکس، جداسازی مزیتی می‌شود. ۲. در مرحله بعد با استفاده از تابع Sum مزیتی مربوط به تمامی عکس‌ها با هم تلفیق می‌شود. ۳. این بخش از مدل، نویسه‌ها را از بین می‌برد. ۴. در این بخش، مزیتی حاصل از بخش ۳ رقیق شده و اطلاعات شامل دانه‌ها به صورت خودکار محاسبه می‌شود.
نمونه‌های طبیعی مورد استفاده در این کار شامل سه مقطع
نام کوارتز 121 و Qz70120، Qz70114، Qz70112 و
پک مقطع نامکی در ناحیه میلونیتی گرانیت
به شکل 25 میکرونیت با شکل 2 میکرونیت با
میکرونیت با یکدیگر می‌باشد با سه مقطع کوارتزیتی
مه‌بی‌ره دایر یا خاموشی موهغی هستند. ولی در مقطع
میلونیتی، نزدیک به هم هست که این پدیده بناهای
تربیجی بطورشاخته‌ای در بین دامنه کوارتزیتی است. در
بین دامنه کوارتز و یا دیگری در اغلب سنجشگاه
معلوم کرد که در تحلیل این روش می‌توان به
ضد مولکول‌های نکات که در سنجشگاه مثل
که در این روش پژوهشی با ناحیه حاصل از روش یا دیگری
که در این روش نکات استفاده کرده‌اند، فراهم می‌شود.

2-1-2 تهیه عکس
برای تهیه عکس‌های میکروسکوپی، از باره انتخاب ۹۰ درجه
استاندارد شد. در این باره هر دانه دو هکبیک خاموشی کامل و
حتاکثرها را نشان می‌دهند و موجب استحکام تزریق برای
مرز‌های دامنه عکس‌های بر روی پیکسل‌های دامنه به
سنجشگاه‌ها می‌تواند بتواند با توجه به روش تشخیص
مرز دامنه با استفاده از PNG دیکتر استفاده
کارایی بالای روش مورد استفاده [۶۴، ۶۵، ۱۲]. این
عوامل با توجه به روش تشخیص مرز دامنه (مراحله
شود به
بخش مرز‌زیات اولیه بسیار محدود کنند و فشار
نامعلومی طی فرآیند میلونیتی نشان می‌فروشد. برای
پیکسل‌های کاذب و یا ناقض به تعریف موارد بعد، با پیدای
از پیکسل‌های دامنه به دست آمده از پیکسل‌هایی که مرز
های را به هم نزدیک کرده به روش از پیکسل‌های به
پیکسل‌های نشان می‌دهند. با استفاده از نرم‌افزار میانگین
۱۱۱ ژاوه انتخاب. تهیه عکس‌های با میزان قابل قبول
ارتباط می‌یابند. با استفاده از نرم‌افزار میانگین
در محیط نرم‌افزار (Neighborhood statistics–Mean)
می‌توان به دو بین پیکسل‌های اصلی دامنه. همان
پیکسل‌های باره می‌باشد و این پیکسل‌هایی که مرز
نیزدیک کرده به پیکسل‌های، میانگین تمام پیکسل‌های در
گسترش‌های به ابعاد ۰۰۵ می‌باشند و پیکسل‌هایی که مرز
این گسترش نسبی می‌یابد. این پیکسل را به‌عنوان استاندارد می‌باشد
و در پیکسل‌هایی که مرز

۱۵۱ نویسی: حسین بورکانی، برقی
اطلاعات کمپیوتری عکس‌ها در مراحل کاربری بعدی افزایش می‌دهد (منظور از افزایش کمپیوتر عکس در این کار پژوهشی است). بین بردن عوامل ناخواسته در عکس‌های ArcGIS نشان‌پذیر است از اعمال این فیلتر نرم‌افزار پکسل‌های مربوط به هر دانه جایزه خوب به هم نمی‌کنند. می‌شوند ولی هر نسبت سبب ضعف‌تر شدن آثار نرم‌افزار یک دهنده را شده و تا حدی منجر به کاهش وضوح می‌شود. با این وجود، مراحل اصلی تا حد قابل حفظ همیشه ها به طور جداگانه صورت می‌گیرد (پل ۳). هرچه ابعاد فیلتر بزرگ‌تر باشد، مقدار پکسل‌های مربوط به هر دانه به هم نزدیک‌تر خواهند شد و عوارض ناخواسته با ابعاد بزرگ‌تر را نیز در عکس محو می‌کند، ولی در عوض، وضوح مزرعه داخلی ها کمتر می‌شود.

۲-۲-۲ مرزندی أولیه دانه‌ها از دیدگاه نظری در گسترده هر دانه، مقدار پکسل‌های یک دانه نزدیک به هم بوده و در نتیجه میزان نوع مقدار پکسل‌های مجاور در درون یک دانه نیز باید کم باشد. ولی در گسترده مزرعه دانه‌ها، مقدار پکسل‌های مجاور با تغییر ناگهانی روی می‌شود. تغییرات ناگهانی در مقدار پکسل‌های مجاور همیشه به سمت وجود مزرعه نیست بلکه جانبه در خشکی به کنار و دیگر، مواردی همچون موقعیت مکانیکی است که در اثر کوچک میزان پکسل‌های مربوط به گسترش‌های ایجاد می‌شود. در نهایت در مرحله اولیه مزرعه‌ها در مرحله بعدی رفع خواهد شد.

شکل ۲ عملکرد مدل اثرات شده در مرحله افزایش کمپیوتر عکس‌ها با استفاده از فیلتر نرم‌افزاری میانگین. ۱: پیش از اعمال فیلتر میانگین، ۲: پس از اعمال فیلتر میانگین.
یک مدل پیش‌بینی انجام شده بوسیله مدل روي عکس‌های تهیه شده (در پارامتر 90 درجه و به فاصله ۵ درجه) به‌نامیش در آمده است. مدل ارائه شده در این پژوهش پس از مزربرندی هر عکس به طور جداگانه (۱ تا ۱۹)، آنها را به هم تلفیق کرده و مزربرندی کامل دانه‌ها را به صورت مزربرندی ضخیمی (۲۰۰) به عنوان خروجی ارائه می‌دهد.

در این مرحله نخست ضخامت مزربرندی، با استفاده از آبیاری به‌ادراده یک پیکسل کاهش داده می‌شود تا برای کاهش نفوذ آباده شود. مانیتم‌گیری افزایش کیفیت عکس در مراحل قبلی و از بین بردن عوامل مشکل‌زا ممکن است باز هم مزربرندی ناخواسته و غیر واقعی در تصاویر ایجاد شود که به این مزربرنده‌ای ناپاسخه نفوذ می‌گردد. نفوذ‌ها در تصویر به صورت مناطق کوچک و نابی‌پوش دیده می‌شوند در حالی که مرز دانه‌ها در سراسر مقطع به هم پیوسته است. بنابراین نفوذ‌ها
خروج‌کردن مرزه‌های کسته را که با قیمت‌هایی تواناست یا مرسیده شده‌اند، حذف کرده و فقط مرسیده‌های بسیار به جنگل‌های تبدیل می‌کند (شکل ۱). پس از تبدیل مرز دانه‌ها به جنگل‌های ArcGIS و پرگاه‌هایی نظیر مساحت، حضارت، مرکز جرم دانه‌ها و اطلاعات مکانی دانه‌ها را استخراج کرده. به علاوه کابریم تواده، اطلاعات گرافیکی دیگری همانند ریزساختارهای مربوط به هر دانه در کلی همانند بر تکیه شیمیایی، و موقعیت محور نوری دانه‌ها را به داده‌های قبلی اضافه کند. بدین ترتیب کاربری می‌تواند در آن بر اساس یافته‌های این ابتدای شده، انواع محاسبات آماری را انجام دهد و به تجزیه و تحلیل مراحل مشابه‌های دانه‌های پیش‌بینی و پرکننده مکانی مکانی دانه‌ها [۲۲] و مخابره [۲۳] اشاره کرد.

شکل ۵- مزرعندی دانه‌ها در این مرحله، مزرعندی دانه‌ها به وسیله سنگ، رقمی شده و تبدیل به جنگل‌های می‌شود. هم‌گام رقمی کردن، مدل به‌طور

شکل ۶ در تصویر ۱ مزرعندی را پیش از مرحله کاشت نویه و در تصویر ۲ مزرعندی را پیش از کاشت نویه نمایش می‌دهد. در تصویر ۱ نمودارایی از نویه با پیکان‌های دانه‌ها داده شده که در تصویر ۲ به وسیله سنگ نمایش داده شده.
سه راستای ۳۵ و ۹۰ درجه تهیه شدهاند (عکس‌ها در نور قطیب‌ده و با حضور تیغه لاندا تهیه شده است) با مزیندی انجام شده به وسیله مدل، بنر شده و به نمایش در آمدندان (تشکل ۷). با دقت در نظر گرفته شده‌است که عکس‌ها در مدل ارائه شده، در مورد مقاطع نازک کوارترنی قابلیت بود، ولی در برخی موارد ظاهراً مدل نتوانسته مرز دانه‌ها را به درستی رسم کند (پیکان‌ها در شکل -۱ تا ۳). همان‌طور که در ناحیه‌های همجواری که سنتی‌تر بررسی‌ناپذیر بودند، مشاهده شد که کاهش رنگ ناخالی دانه‌های همجوار این ناحیه، این حالت در ناحیه‌های همجواری که سنتی‌تر بررسی‌ناپذیر بودند، مشاهده شد. البته در این موارد اغلب مرزهای ترسیم نشده مرز واقعی نیستند بلکه زیردانه‌اند. وجود زیردانه در عکس شماره ۱۸ می‌تواند سبب اصلی اختلاف عکس‌ها و عکس‌های اضافه و ناقص در سیستم کرده است. در بررسی‌هایی که مورد آن وجود تغییر درون دانه است (تشکل ۸).

۳- ارزیابی مدل
در این کار پژوهشی، برای برآور و بررسی روش ارائه شده و عملکرد مدل طراحی شده به سه روش زیر عمل شده است.

۴- بررسی عکس‌ها در این مدل طراحی شده، بررسی مزردی این مدل در طریق مدل یکی از روی های ارزیابی مدل طراحی شده، بررسی مزردی این مدل در ناحیه‌ها روز عکس مقطع مربوطه است. با مشاهده بررسی مزردی این مدل، عکس از مقطع نمی‌توان با اطمنان در مورد درستی عملکرد مدل طراحی شده، قضاوت کرد. در این مدل این نشان داد که هرم عکس در ناحیه خاص از جرخان می‌زاید می‌کارسکوب است و این احتمال وجود دارد که در این زاویه خاص، دو دانه همجوار علیرغم تفاوت در جنس و سنتی‌تر بررسی‌ناپذیر بوده‌اند. ناحیه‌های ناحیه‌های که در زاویای مختلف جرخان می‌کارسکوب تهیه می‌شوند مقایسه کرده در این پژوهش، عکس‌هایی که در
شکل ۸ ترسیم مرز غیر واقعی برای یک نفوذی به وسیله مدل، نشان داده شده است.

۲-۳- برای مشخص کردن به روش دستی و مدل
یکی دیگر از روش‌های ارزیابی مدل، برآور نتایج حاصل از عملکرد مدل با نتایج مدل دستی است که به عنوان می‌تواند برای کنترل عملکرد مدل می‌تواند از آن استفاده کرد. این شیوه برای دستی تنها در صورتی می‌تواند، می‌تواند مناسب باشد که رقیق کردن مرز دانه‌ها به روش دستی، صحیح انجام شده باشد. از انجاکه عمق‌ها در رقیق کردن به روش دستی تناها از یک عکس استفاده می‌شود، نمی‌توان از موارد دخالت خطا که در بالا به آن اشاره شد اجتناب کرد. برای کاهش هرچه بیشتر خطای در رقیق کردن دستی، به طور هم زمان از عکس رنگی در راستاهای ۱۵ و ۷ درجه چرخش می‌پرسی می‌تواند استفاده شده تا روند کلی الگوی نگه‌داری یافته دهانی هنگام رقیق کردن منید را قرار گیرد (عكس‌ها در تصور، گفتگو و با حضور تغییر لاشان تهیه شده است.) با مقایسه مزیندی دستی و خروجی مدل (شکل ۹)، برآور قابل قبولی در مقاطع کوارتزی مشاهده می‌شود، ولی به دلیل که در بالا گفته شد، برآر در مقطع میلونیتی ضعیف است.
شکل 9 در این شکل، مزینیدی به وسیله مدل و روش دستی بر اساس مقایسه بر هم برای داده‌ها محاسبه ۲۱۰ و ۲۱۱ به ترتیب نمونه‌هایی از جنس میلونیت (در این تصویر به روش دستی، فقط دانه‌های کوارتز مزینیدی شده‌اند ولی مدل دانه‌های غیر کوارتز را به رنگ رنگی کره‌ای است) را نشان می‌دهد. خطوط خاکستری مزینیدی به وسیله مدل و خطوط سبز رنگ، مزینیدی به شیوه دستی را نشان می‌دهند.

شکل ۱۰ در این نمودارها عملکرد مدل و مزینیدی به شیوه دستی (با رعایت موقعیت مکانی دانه‌ها) به صورت کمی و با استفاده از ویژگی‌های شکلی دانه‌ها از قبیل: ۱- محیط ۲- مساحت ۳- عرض ۴- طول در مزینیدی ۲۱۷ دانه، مقایسه شده است. مقیاس ویژگی‌های محاسبه شده در این شکل واحد است.
کاربران مزین‌بندی‌ها به دو شیوه دستی و براساس مدل، با دقت در این شکل مشاهده می‌شود که دانه کوچکی که به وسیله مدل مزین‌بندی‌های روش دستی به عنوان کوچک به دست آمده است و بدین ترتیب، موجب تفاوت مزین‌بندی بین دو روش دستی و مدل آن‌ها شده در این پژوهش شده است. خطوط سفید، مزین‌بندی به وسیله مدل و خطوط سیاه رنگ، مزین‌بندی به شیوه دستی را نشان می‌دهد.

4- برداشت

روش این اثر شده در این کار پژوهشی قادیر است مرز دانه‌ها را از نظر عکس‌های مقاطع نازک بدون دخلات کاربر با دقت بالا همراه با سایر اطلاعات شکل‌های آنها رسم کند. از برتری‌های مهم این روش، ایجاد یک پایگاه اطلاعاتی شامل ویژگی‌های شکلی و موقعیت مکانی دانه‌هاست که می‌توان از آن برای تحلیل‌های شکلی و مکانی استفاده کرد. نماز مراحل ArcGIS مزین‌بندی در محیط نرم‌افزار ArcGIS انجام می‌باشد. روش ArcGIS مزین‌بندی در محیط نرم‌افزار ArcGIS انجام می‌ба...
یک تابع همسایگی 5 می‌باشد که با عبور از سرتاسر عکس، به‌شیوه مقادیر پیکسل‌ها را در محدوده تعريف شده (در این مثال 5*5) محاسبه نموده و آنرا به پیکسل مرکزی آن محدوده نسبت می‌دهد.

Focal STD
یک تابع همسایگی است که احراز معیار پیکسل‌ها در محدوده تعريف شده (در این مثال 5*5) برای هر عکس را محاسبه می‌کند و به پیکسل مرکزی آن محدوده نسبت می‌دهد.

Iso Cluster
این تابع با کارگیری روش دسته‌بندی داده در گروه‌های با خصوصیات نزدیک به هم، داده‌ها (در این مثال مز و غیر مز) را تُغییر بخشیده می‌کند و نتیجه را به صورت فاصله مناسب ارائه می‌دهد.

Maximum likelihood classification
با این تابع و خروجی تابع Iso Cluster می‌توان پیکسل‌های عکس را به مز و غیر مز تشخیص داد.

Neighborhood
به شکل گسترده‌ای که در آن تابع همسایگی عمل می‌کند، گفته می‌شود که شامل: چهارگوش، دایره، گوه و هدایت است. در این مثال از 5*5 محدوده استفاده شده است.

Plus
تابعی است که خروجی آن عکسی است که مجموع مقادیر پیکسل‌های منتظر در دو عکس ورودی است.

Raster to polyline
این تابع عناصر خطی در عکس را رقمی و نتیجه به چند خطي می‌کند.

Region Group
این تابع تمامی سطح عکس یا جستجو می‌کند و مناطق بیوسه (دراز مکانی سیاه و در ارتباط با هم) را می‌یابد. سپس به هر کدام از این مناطق عدد مشخصه نسبت می‌دهد.

Feature class to polygon
این تابع مرز دانه‌ها را از حالت خط به چند پلیگون تبدیل می‌کند.

Feature to Coverage
این تابع از اشکال چندضلعی به پایه‌گاه داده حاوی اطلاعات شکلی (مساحت و محیط) می‌سازد.

Set null
146

Con
این تابع در مدل طراحی شده با اجرای فرآیند If/Else روی مز و غیر مز اطلاعات پیشنهاد می‌کند و مورد استفاده قرار می‌گیرد.

Feature class to polygon
این تابع مرز دانه‌ها را از حالت خط به چند پلیگون تبدیل می‌کند.

Focal Max
این تابع از اشکال چندضلعی به پایه‌گاه داده حاوی اطلاعات شکلی (مساحت و محیط) می‌سازد.

Non-Data tabbed است که مقادیر تعریف شده در آن پیکسل‌ها صحیح باشند (مشخص کننده پیکسل‌هایی که مرز نیستند)، به آنها نسبت نهایی دهی. در
صورتی که مقدار شرطی هر پیکسل‌ها مورد نظر صحیح نباشد، مقادیر پیکسل‌های عکس ورودی خام را به صورت خروجی عکس ارائه می‌دهد.

Summary

یکی از مجموعه‌های پایدار جهت تعیین درون‌خاکی در عکس‌های ورودی را محبوب می‌کند و مناسب به عکس‌های گردیده و مشابه می‌شود.

Thin

این تابع ضخامت خاکی در عکس را به منظور یک پیکسل تقلیل می‌دهد.

Times

این تابع مقادیر پیکسل‌های مناطق درون عکس ورودی را با
پدیدگر ضرب و به صورت یک عکس ارائه می‌دهد.

Zonal Perimeter

این تابع محیط مربوط به پیکسل‌های مرتبه‌ای مربوط با هم در یک
منطقه از عکس را محاسبه می‌کند.

References

[6] Fueten F., Mason J., “An artificial neural net assisted approach to editing edges in petrographic images collected with the rotating polarizer