بررسی نتایج شیمی‌تر در تغییر کمی مقدار کاتیون‌های آهن در بیوتیت

امیر علی طب‌خ عشایری

پژوهشکده علوم زمین، ساربان زمین شناسی و اکتشافات معدنی کشور (دربایت مقاله: 14/6/89، شماره نهایی: 118)

چکیده: محتویات کاتیون‌های آهن سه نمونه بدون از گره، سه نمونه بدون شیشه تولید شده توسط سری‌ریز‌پردازندگی الکترونیک، طیف‌شیمی‌ای موساپ و شیمی‌تر تغییر شده. حمایت کننده در این بررسی نسبت‌های Fe$^{3+}$/Fe$^{2+}$ تعیین شده بر طیف‌شیمی‌ای موساپ و نمونه‌های میکا که از دقت بالایی برخوردار هستند با آنالیزدانه آهن کل از طبقه‌بندی‌های الکترونیک با تغییر شیمی‌تر کاتیون‌های آهن مورد بررسی و مقایسه قرار گرفته. مقایسه نتایج نشان می‌دهد در روش شیمی‌تر، نمونه‌های میکا با تغییر در مرحله هضم اسید نسبت به میکاها دانه‌ای به سهولت حلال شوند، لذا نتایج آنالیز از درستی و دقت بالاتری برخوردارند.

واژه‌های کلیدی: بیوتیت، کاتیون‌های آهن، طیف‌شیمی‌ای موساپ، ریز‌پردازندگی الکترونیک، شیمی‌تر، صحت و دقت

مقیده

در برخی از بررسی‌های زمین‌شناسی از دست داده‌های آهن دو و سه طرف‌افزای دقت و قابل اطمینان از نمونه برای تعیین ویژگی‌های سنتی‌سازی کلاسیک شناسی زمین است. به عنوان مثال، در سنگ‌های ریتیسیت، بیوتیت دسترس‌پذیر نشانگر جلوه‌های سخت باعث موجودی آهن سه نمونه با دقت بالا و شبیه می‌باشد. این نتایج ایجاد مقدار آهن دو و سه طرف‌افزای قابل اطمینان می‌توان در روش‌های پیشنهادی گرفته‌شده کسی را به روش‌های افزایش طبقه‌بندی می‌رساند.

مقدمة

در برخی از بررسی‌های زمین‌شناسی دانست داده‌های آهن دو و سه طرف‌افزای دقت و قابل اطمینان از نمونه برای تعیین ویژگی‌های سنتی‌سازی کلاسیک شناسی زمین است. به عنوان مثال، در سنگ‌های ریتیسیت، بیوتیت دسترس‌پذیر نشانگر جلوه‌های سخت باعث موجودی آهن سه نمونه با دقت بالا و شبیه می‌باشد. این نتایج ایجاد مقدار آهن دو و سه طرف‌افزای قابل اطمینان می‌توان در روش‌های پیشنهادی گرفته‌شده کسی را به روش‌های افزایش طبقه‌بندی می‌رساند.
روش طیف‌سنجی موسیات

طیف‌سنجی موسیات روشی به نسبت متداول برای تشخیص محیط محل آلی در کانی‌های آهن‌دار است این اجرای قابلیت می‌زند در حدود Fe3+/Fe2+ 0/5 2/0 کل آلی از آن این روی همان‌های همدی و جمعیت کانی‌های آلی را می‌تواند سازمان اغلب دسترس و می‌دهد به معنی مثال، در سیلیکات‌های ورقای کانی‌های آلی سه طرف، دریافت به گچ‌های جوگری و هسته‌جوگری از یکدیگر تفکیک و از نظر کمی نسبت بین آنها تعیین می‌شود. حتی در مواردی این روی می‌تواند کانی‌های Fe2O3 در میان‌های هسته‌جوگری سبب در تفکیک و نسبت آنها تعیین کند. 100 لی عیب اصلی آن وابسته‌بودن در دستی آن به توانایی ما در اندازه‌گیری ثبات درجه بندی است.

روش شیمی‌آزمایی

روش شیمی‌آزمایی روی صفحه است که یکی از به تیره‌برنامه‌گران قیمت‌داده و بدون ارجاع به پارامترهای رجtanggal به پیچیده‌شده محیوت آهن قوی را بحر افزون با غلظت محتوا واقعی بطور مستقیم اندازه‌گیری می‌کند. 12 لیک این روی روی مغز است به‌عنوان مورد آنالیز پس از آنالیز باریکه نمی‌شود. افزون بر این برای خوشه‌ای و تغییر‌پذیر شدن های سیلیکاتی از این استفاده می‌شود که کانی‌های آهن وار محلول شدن. این مرحله بر جلوگیری از اکسایش Fe2O3 در اثر نیکل لزوم بسیار نیز لازم است که اکسایش Fe3+ را تجویز نمی‌کند. شدن. تکیه‌گاهی آخر اینکه صرفه‌سازی کانی‌های سیلیکاتی آلی در هوا و به یکی از محیط‌های برای تنتیک برخی از مرحله‌های است اسیده علی اکسایش آلی است.

[3] توصیف نمونه‌ها

نمونه‌های بیوتیت در این پژوهش از سطح‌های گرانی کانی‌ها به‌دست آمده. کاهش قادحی آیالاسی در کانای جدید شده است این بیوتیت به‌منظور بررسی که می‌تواند سطح بالای فلزی 0/3 تا 0/1 با همراه با فلز بازیابی برای انتقال 24 25/26 آزمایشات ارائه شده است.

(4) OH + F + Cl = F− برای به‌دست آمده به نظر طیف‌سنجی موسیات تعیین Fe3+/Fe2+. شد. 0/13 در این بررسی برای به‌دبایی نمونه‌های بیوتیت از سه نمونه
جدول 1: ترکیب شیمیایی نمونه‌های بیوتیت و فرمول ساختاری برای Fe.³⁺/Fe (O + OH + F + Cl) نسبت نمی‌باشد.

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>SLP</th>
<th>Hf1</th>
<th>Hf2</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>34.95</td>
<td>35.01</td>
<td>35.01</td>
</tr>
<tr>
<td>TiO₂</td>
<td>3.79</td>
<td>3.93</td>
<td>3.93</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>18.33</td>
<td>17.84</td>
<td>17.84</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>4.61</td>
<td>4.62</td>
<td>4.62</td>
</tr>
<tr>
<td>FeO</td>
<td>19.90</td>
<td>19.90</td>
<td>19.90</td>
</tr>
<tr>
<td>MnO</td>
<td>0.43</td>
<td>0.43</td>
<td>0.43</td>
</tr>
<tr>
<td>MgO</td>
<td>8.71</td>
<td>8.73</td>
<td>8.73</td>
</tr>
<tr>
<td>CaO</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.02</td>
<td>0.02</td>
<td>0.02</td>
</tr>
<tr>
<td>K₂O</td>
<td>9.76</td>
<td>9.76</td>
<td>9.76</td>
</tr>
<tr>
<td>H₂O</td>
<td>3.77</td>
<td>3.77</td>
<td>3.77</td>
</tr>
<tr>
<td>F</td>
<td>0.37</td>
<td>0.37</td>
<td>0.37</td>
</tr>
<tr>
<td>Cl</td>
<td>0.04</td>
<td>0.04</td>
<td>0.04</td>
</tr>
<tr>
<td>total</td>
<td>99.89</td>
<td>99.85</td>
<td>99.82</td>
</tr>
</tbody>
</table>

- Si: 53.5
- Al: 25.5
- ΣT site: 8.00
- Al: 0.68
- Ti: 0.44
- Fe³⁺: 0.35
- Fe²⁺: 2.46
- Mn: 0.43
- Mg: 1.54
- ΣO site: 5.39
- Ca: 1,000
- Na: 0.04
- K: 1,992
- ΣA site: 1,945
- OH: 3.88
- F: 0.14
- Cl: 0.02
- Fe²⁺Fe³⁺: 0.71
- Fe³⁺Fe: 0.12
طوف نمایی مویسیات

طیف‌های کمربنی یک نمونه Fe57 محصول از تخم‌دوزی این مویسیات از مشاهده می‌شود که در محدوده 100-1000 کیلوهertz قرار دارند. این اثر در 400 کیلوهertz قدرت‌های اولیه و در 800 کیلوهertz قدرت‌های دومی و سومی قرار دارد.

طیف نمایی مویسیات

در این یپوشه طیف‌سنجی مویسیت 3 نمونه میکاک هسته شناسی (1) یک طیف مویسیت‌پذیری بسیار سطح سطح بدن به ترتیب با 2.3 mm/s + 0.5% و 3.1 mm/s + 0.5% سطح خارجی و 2.5 mm/s + 0.5% سطح داخلی قرار دارد. از این طرح‌ها یک بررسی بیشتری در محدوده 0.4-4 mm/s به در نظر گرفته می‌شود.

بحث و بررسی

طیف نمایی مویسیات

در این یپوشه طیف‌سنجی مویسیت 3 نمونه میکاک هسته شناسی (1) یک طیف مویسیت‌پذیری بسیار سطح سطح بدن به ترتیب با 2.3 mm/s + 0.5% و 3.1 mm/s + 0.5% سطح خارجی و 2.5 mm/s + 0.5% سطح داخلی قرار دارد. از این طرح‌ها یک بررسی بیشتری در محدوده 0.4-4 mm/s به در نظر گرفته می‌شود.

شیمی‌تر

اندازه‌گیری آهن کل Fe\textsubscript{2}O\textsubscript{3} (به روش طیف – نورسنجی) (Fe\textsubscript{2}O\textsubscript{3} total) از 2 گرم از یک بوته نمونه را در یک بوته قبل به 1500° درجه سانتی‌گراد برای 2 ساعت در هوا به 1500° درجه سانتی‌گراف
شکل 1 تغییرات میکروبای تغییرات میکرو...
مجله بلوارشناسی و کاوه شناسی ایران

redi یک ذخیه سند تا درستی روش ارزیابی شود. بحاراتی از
دو نمونه استاندارد و مرجع سنجک که به صورت پودر در
ابعاد ۲۰۰۰ میلی‌گرم ارائه شده و نمونه‌های استاندارد و مرجع مورد
استفاده هر اندازه (MO-3) و آنلزیت استفاده (12)
هستند که از هر یک ده بخش صفحه‌ای (هر بخش یک گرم)
توان بخش معنی‌داری از آن انتخاب شده و به ترتیب از طریق
شیمی و طیف‌سنجی نوری برای روش توصیف شده در بالا
عمیق شد. نتایج اینها در جدول (۷) همراه با پارامترهای
امرا نمونه و شده ارائه شده. مقادیر انحراف معیار بایین
نمونه‌های استاندارد و محاسبه‌ی اندازه‌ی انحراف
معیار مرکب (۷) از مقایسه با انحراف معیار مرکب
نتایج نمونه‌های بیرون‌الدی‌ای (۷) این بررسی
را مطرح می‌کند که آیا تکرار بیشتری با دقت نسبتاً بالایی آنالیز
نمونه‌های بیرون می‌تواند بیانگر تاثیر اندازه‌ی ذرات باشد؟ بحاراتی
است بگردا سایزی و توزیع محلول‌های مصرف و اکسایش
در طی فرآیند و تخریب نمونه ارتباط دارد.

جدول ۷ نتایج تغییرات کانی‌های آهن نمونه‌های بیون‌خته‌ای (ابعاد ۲۵۰۰×۲۵۰۰ میکرون) با شیمی‌تر. توجه انحراف معیار مرکب محاسبه

<table>
<thead>
<tr>
<th>نظریه FeO</th>
<th>SLP</th>
<th>H1</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td>درصد تغییر</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>محاسبه‌ای</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>معیار مرکب</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>محاسبه‌ای</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FeO</th>
<th>نظریه</th>
<th>SLP</th>
<th>H1</th>
<th>H2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>درصد تغییر</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>محاسبه‌ای</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>معیار مرکب</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>محاسبه‌ای</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

شده برای نتایج FeO با عبارت سنجی ۲ درصد وزنی است.
جدول ۴ نتایج آزمایشات و روش برای تعیین اینه فر و اهن کل با طیف میکروسکوپی و عبارسنجی، نتایج میزان میزان و نسبی آن.

<table>
<thead>
<tr>
<th>دفعات آلیز</th>
<th>Fe₂O₃ total</th>
<th>FeO</th>
</tr>
</thead>
<tbody>
<tr>
<td>مرتبه - ۱</td>
<td>۱۸٫۴۲</td>
<td>۹٫۷۵</td>
</tr>
<tr>
<td>مرتبه - ۲</td>
<td>۱۸٫۲۷</td>
<td>۹٫۶۵</td>
</tr>
<tr>
<td>مرتبه - ۳</td>
<td>۱۸٫۵۲</td>
<td>۹٫۷۵</td>
</tr>
<tr>
<td>مرتبه - ۴</td>
<td>۱۸٫۵۶</td>
<td>۹٫۷۵</td>
</tr>
<tr>
<td>مرتبه - ۵</td>
<td>۱۸٫۶۰</td>
<td>۹٫۷۵</td>
</tr>
<tr>
<td>مرتبه - ۶</td>
<td>۱۸٫۷۵</td>
<td>۹٫۷۵</td>
</tr>
<tr>
<td>مرتبه - ۷</td>
<td>۱۸٫۸۷</td>
<td>۹٫۷۵</td>
</tr>
<tr>
<td>مرتبه - ۸</td>
<td>۱۸٫۹۵</td>
<td>۹٫۷۵</td>
</tr>
<tr>
<td>مرتبه - ۹</td>
<td>۱۸٫۴۵</td>
<td>۹٫۷۵</td>
</tr>
<tr>
<td>مرتبه - ۱۰</td>
<td>۱۸٫۵۶</td>
<td>۹٫۷۵</td>
</tr>
</tbody>
</table>

میانگین:
۱۸٫۱۵

 مقادیر شاتن شده:
۱۷٫۹۴

 خاکی مطلق:
۸۴

 خاکی نسبی:
۵۷

 مدیان:
۱۸٫۶۵

 انحراف معیار:
۴۲

<table>
<thead>
<tr>
<th>نمونه ۱۲</th>
<th>Fe₂O₃ total</th>
<th>FeO</th>
</tr>
</thead>
<tbody>
<tr>
<td>مایزیر</td>
<td>۱۱٫۰۲</td>
<td>۴۸۶</td>
</tr>
<tr>
<td>مایزیر</td>
<td>۱۱٫۰۷</td>
<td>۶۹۵</td>
</tr>
<tr>
<td>مایزیر</td>
<td>۱۰٫۹۸</td>
<td>۶۹۲</td>
</tr>
<tr>
<td>مایزیر</td>
<td>۱۰٫۹۳</td>
<td>۶۹۷</td>
</tr>
<tr>
<td>مایزیر</td>
<td>۱۰٫۸۵</td>
<td>۶۹۳</td>
</tr>
<tr>
<td>مایزیر</td>
<td>۱۰٫۸۰</td>
<td>۶۹۲</td>
</tr>
</tbody>
</table>

بنابراین برای آزمون این مسئله، از هر یک از ۲ نمونه بیوتاک دانه‌ای توصیف شده در بالا، به‌مقدار میزان اشکال و در هالوی از نظر آگات در ۲۵ ضریب (برای جلوگیری از اکسایش اهن دو طریقی در معرض هوا) در مدت یک ماه در ایجاد ۲۰۰ مس تهیه شد. سپس میزان اینه فر که از آنها در آزمایشگاه سامان شیمی‌دانی تعیین شد که نتایج در جدول (۵) به نامیش گذاشته شده‌اند. از این عبارت سنجش دادهی خاکی FeO به انحراف معیار میزان این نتایج ۱۳۷ تا ۷۲ برای بیت نزدیک به انحراف معیار میزان FeO بی‌شک از این نتایج میزان مهم‌ترین اثرات این مسئله است. لذا در نتایج آزمون این مسئله، با توجه به شدت و کثرت درک این اثرات در تونلهای با توجه به شدت و کثرت درک این اثرات در تونلهای
این مقاله در تحقیقاتش با مکار رزیبدارش الکترونی روی FeO بیونیت استاندارد (BIOT-LP6) با مقدار شناخته شده FeO^{2+} درصد ورود در نمونه های آهن و اثر افزایش FeO میانگین 2% به صورت مقدار مشخص شده است. اینکه درصد یکی از اصلی اثر افزایش اکسیداسیون FeO به شکل تولید محیط شده باشد.

با توجه به اینکه اثر افزایش FeO به شکل تولید محیط شده باشد.

<table>
<thead>
<tr>
<th>اثر افزایش اکسیداسیون</th>
<th>FeO</th>
<th>FeO</th>
</tr>
</thead>
<tbody>
<tr>
<td>اثر افزایش اکسیداسیون</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
</tbody>
</table>

جدول ۵. نتایج آنالیز 6 مربوط به روستی درصد نمونه FeO با روستی درصد نمونه FeO
سپاس و قدردانی خود را ابراز می‌دارد.

برداشت

تأثیر اندازه‌ی ذرات در دقت یافتن نتایج به دست آمده از روش شیمی‌تیر در مقیاس‌های با دقت نتایج حاصل از آنالیز ریز‌پرازده‌سازی - تیف نمایی موسائار به روشی نشانگر فروبیشی ناقص نمودن- های دانایی یا قطعه اسیدی است که به احتمال زیاد منبع مهم خطا به شمار می‌رود. برای حصول دقت و درستی بالا در آنالیز شیمی‌تیر، نمونه‌های سیلیکاتی دانایی باید در حد ۲۰۰ میکرون بزرگ اندازه‌گیری Fe	extsuperscript{2+} به روش شیمی‌تیر مستعده خطا‌های است که به آنها اکسایش آهن هنگام خردآیش و نرمایش نمونه پیش از آنالیز در معرض هوا است. برای جلوگیری از اکسایش آهن، نرمایش نمونه باید در زیر نشان و در هنگام تولید سوخت گیرد. بنابراین با رعایت این نکات نتایج اکسایش Fe	extsuperscript{2+} به روش شیمی‌تیر نمونه‌های FeO نبیویت و نتایج اکسمان هنگام استاندارد و FeO به روش از دقت تغییر یکسک‌سای درصدی (بیش از ۲۷ و ۳۴ درصد) برخورد شدند. همچنین مقایسه‌ی نتایج اکسید کاتیون‌های آهن با مقدار شناخته شده برای این نمونه‌ها دلایل بر روی نشان دارد.

مقایسه‌ای اندوزه‌گیری آهن کل از دو روش دستگاهی ریزپرازده‌سازی الکترونی و نیز فرآیند سنجشی این نتایج داد که این دو روش از دقت بکسایی (۰.۲) برخورد دارند.

تالیف نمایی موسائار

<table>
<thead>
<tr>
<th>انتخابی</th>
<th>SLP</th>
<th>HF1</th>
<th>HF2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ریزپرازده‌سازی موسائار</td>
<td>۲۰/۸۵</td>
<td>۱۹/۹۸</td>
<td>۲۰/۴</td>
</tr>
<tr>
<td>شیمی‌تیر</td>
<td>۲۰/۱۷</td>
<td>۲۰/۳۶</td>
<td>۲۰/۴</td>
</tr>
<tr>
<td>خطای مطلق</td>
<td>۰/۶</td>
<td>۰/۴</td>
<td>۰/۴</td>
</tr>
<tr>
<td>خطای نسبی</td>
<td>۲/۹۸</td>
<td>۱/۷</td>
<td>۲/۱۵</td>
</tr>
</tbody>
</table>

