بررسی های کاندیداژی و شاره‌های درگیر بر روی رگ‌های کانی‌زایی کوارتز در کانسار وراگرماپی کالجویه، جنوب‌غربی نایین

رضوان مهوری. موسی نقره‌نیان. محمدعلی مکی‌زاده

گروه ریس شناسی، دانشگاه علوم دانشگاه اصفهان
(دریافت مقاله: ۱۳۹۱/۱۲/۲۳، پذیرش نهایی: ۱۳۹۲/۰۱/۲۰)

چکیده: نهشته‌های کالیوئدی در ۱۱۰ کیلومتری شرق اصفهان، در بین‌های ایران مرکزی و در کمربند ولکانولوژیک ارومیه–بزنمن واقع شده است. سنگ میزانی این نهشته سنجشگانی آن‌شانه‌ها با ترکیب بروکسین اندزیت و توپ‌های اولوس با سنگ‌سنگ‌سانی تونسی، ماکویی و توپ سفینی است. تونسی سنجشگان این سنگ میزانی این نهشته هستند. کاندیداژی به مشابه رگ‌های و رگ‌های کوارتز به درگیری کانسپریتی در کانسپریتی نشان می‌دهد که دمای همگن شدن سنگ در ۱۳۱ تا ۱۳۷ درجه سانتی‌گراد و درجه شوری از ۰ تا ۴۵ درصد وزنه معادل نمک طبیعی متغیر است. فراکسیون جوشش در شاره‌های کانسپریت در ۴۰۰ متر سطح قدمی آب رخ داده است. این مطالعات بیانگر وجود محلول کانسپریت با دمای کم تا متوسط شوری بایین و مقدار کانسپریتی کم بیانی. همچنین بررسی‌های انجام شده حاکی از آن است که کانسپریتی فلزی کالجویه از نوع کانسپریتی و راگرماپی در کالجویه بایین است.

واژه‌های کلیدی: شاره‌های درگیر، راگرماپی، کوارتز، کالجویه، نایین

مقدمه

امروزه سولفید‌های مس منابع اصلی تولید مس را تشکیل می‌دهند. مس در صنایع مختلف از جمله صنایع الکتریکی و به ویژه صنایع سیگار و نیز در تهیه اتوپیتا به کار می‌رود. این موارد باعث شده است تا مس به عنوان یک فنر با اهمیت در زندگی بالاشته شده‌باشد. به عقیدهٔ [۱۱] کانسپریتی مس ایران در شش منطقه‌ای جغرافیایی واقع شده‌که عبارتند از: کمربند آن‌شانه‌ها ارومیه–بزنمن، منطقه‌ای البرز بااختیار، منطقه‌ای کویر–سیبرور، سبلان، لوت، مکران (شکل ۱) مهم‌ترین منطقه‌ی کانسپریتی مس در ایران، کمربند ارومیه–بزنمن است که میزان کنترل‌های مهمی همچنین مس

r.mehvary@gmail.com

*نویسنده، مسئول، تلفن: ۷۹۳۲۲۱۵۲۲ (۷۹۳۲۲۱۵۲۲)، شماره: ۷۹۳۲۲۱۵۲۲. (۷۹۳۲۲۱۵۲۲) پست الکترونیکی:
از سنگ‌های آذرین درگوگش شده، جریان‌های گذاره‌ای زیر دریابی و لایه‌های از سنگ‌های درنوز در بر دارند. این واحدها تحت تاثیر دگرسانی پروپنیتنک قرار شده‌اند به‌طوری‌که اپیدوتزارانشان در این سنگ‌ها رخ داده است. به‌خشهای ماهی (کوه‌های تاج آباد) به سر كرتشه بخش‌های پلید و در کنار آنها سنگ‌لباسی لایه‌ای در اثر عملکرد کسل رحم آباد قرار گرفته است طول و عرض توده‌های نفوذی به‌طوری‌که در کنار سنگ‌های دارای ترکیب میکرو‌گرانو برولیتينک در سنگ‌های مافیک‌نا حذف‌گون است و نیز به صورت رگ‌های سیلیسی شکاف پرکن، رگ‌های نانو، دارستی، دودکش‌های پر کن، فضاهای پر‌شده با شاردهای انشاری یافت می‌شوند [۴].

زمن‌سنگ‌سازی و برسی‌های صحراپیونانه
گروه‌تین و واحدهای سنگی در گستره‌ی نهشتی کالجیه به واحدهای هستند که از نظر سنگ‌سنگ‌سازی دارای ترکیب

شکل ۱ مناطق اصلی کانال‌سازی ساز در ایران: ۱) کمربند ارومیه-دندر، ۲) ناحیه‌ی بهز غربی، ۳) ناحیه‌ی کور-سیور، ۴) ناحیه‌ی سیلان، ۵) ناحیه‌ی لوت، ۶) ناحیه‌ی مور، برگرفته از [۱۷] \[Downloaded from ijcm.ir on 2022-02-18\]

شکل ۲ موقعیت جغرافیایی و راه‌های دسترسی به منطقه موربین برگرفته از [۱۲] با تغییرات.
پذیرفتید به روند شمار غربی-جنوبی شرقی و سن احتمالی الگوسی [۶] بیشتر به ۲۰ کیلومتر و ۳ کیلومتر می‌رسد. این روندهای نفوذی در واحدهای کرتانه نفوذ کرده و باعث دگرگونی مجازاتی شدند. در گستره‌ی مورد بررسی بیشترین رخنه‌ی واحدهای سنگی وابسته به واحدهای انسن ایجاد و این واحدها سنگ در گذرانده‌ی به شکلی مس کالچومر را تشکیل می‌دهند (شکل ۳) [۶]

در بررسی‌های صحرایی و مشاهده‌های میکروسکوپی این پژوهش، لیتوژوژی این واحدها بیشتر تونسی‌ساخت انجام داده شد. این واحدهای سنگی بی‌پروکسید ترشح داده شده است. این واحدهای سنگی به طور فراگیر تحت تأثیر دگرسانی پروپیتیک قرار گرفته و کانی‌های شاخص این دگرسانی بیشتر شامل اپیدوت، کلریت و کلسیت است به گونه‌ای که رگه‌ها و پرکرده‌های فراوان اپیدوت و کلاژن رنگی مانند رنگ سبز در تونسی و گدازه‌های انسن ایجاد شده است. واحدهای سنگی کم‌ساخت تحت تأثیر فاز زمین‌ساختی پرپت (ائوون-ولیوسی) قرار گرفته و در و شکستگی و در بخش‌هایی حتى زون گسل ایجاد شده است. این گسل که جریان‌های نیمه‌داشت و در زه‌های بی‌ه

شاخص [۶] با اندکی تغییرات.

شکل ۲: نقشه‌ی زمین‌شناسی ساده شده منطقه، بارگرته از برگه‌ی زمین‌شناسی ۱:۱۰۰۰۰ کجان [۶] با اندکی تغییرات.
روش بررسی به منظور شناسایی منطقه، نخست از نقشه‌ی ۱:۱۰۰۰۰۰، شد و سپس برای شناخت بیشتر، از جند به‌دید صحرایی و نمونه‌برداری‌های سیستماتیک با استفاده از

شکل ۵ الف) نمایی از ساخت شکاف برکن ب) نمایی از ساخت شاهی ب) نمایی از ساخته‌های جعبه‌ای در اثر انحلال.

شکل ۲ الف) رگ‌ها و رگ‌های کوارتز که نشان دهنده حالت نیمه و ضربانی گسل هستند (دید به سمت شمال) ب) رگ‌های کوارتز در راستای گسل های منطقه (دید به سمت جنوب).
در گردشی از HI-S90 مدل Linkam به عنوان کننده (کنترل کننده) به منظور بررسی‌های دما و تعیین شرایط در گردشی کننده LNP و سرد کنندهی نوع TMS92 نمونه‌های شاره‌هایی مورد استفاده قرار گرفتند. در مرحله بعد و برای شناسایی بیشتر شاره‌های در گری‌ی، تعداد 9 چیپس با ویفر در کارگاه تهیه شدند. برای سنگ‌گاری شاره‌های در گری‌ی از یک میکروسکوپ قطعاتی المپوس مدل (BH-2) و برای تعيين دماي شاره‌های

جدول 1: دماي همگن شدن برای مجموعه شاره‌های در گری‌ی نشته کالجیوه

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>T_{g} range (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>30G</td>
<td>234 (7)</td>
</tr>
<tr>
<td>30G</td>
<td>294 (5)</td>
</tr>
<tr>
<td>30G</td>
<td>300 (3)</td>
</tr>
<tr>
<td>30G</td>
<td>305 (5)</td>
</tr>
<tr>
<td>41G</td>
<td>230 (8)</td>
</tr>
<tr>
<td>41G</td>
<td>212 (4)</td>
</tr>
<tr>
<td>56F</td>
<td>189 (10)</td>
</tr>
<tr>
<td>56F</td>
<td>235 (1)</td>
</tr>
<tr>
<td>12G</td>
<td>140 (1)</td>
</tr>
<tr>
<td>12G</td>
<td>170 (2)</td>
</tr>
<tr>
<td>12G</td>
<td>294 (3)</td>
</tr>
<tr>
<td>12G</td>
<td>312 (4)</td>
</tr>
<tr>
<td>24G</td>
<td>238 (3)</td>
</tr>
<tr>
<td>49G</td>
<td>244 (4)</td>
</tr>
<tr>
<td>49G</td>
<td>341 (3)</td>
</tr>
<tr>
<td>49G</td>
<td>347 (3)</td>
</tr>
<tr>
<td>36G</td>
<td>101 (1)</td>
</tr>
<tr>
<td>36G</td>
<td>193 (3)</td>
</tr>
<tr>
<td>36G</td>
<td>287 (4)</td>
</tr>
<tr>
<td>22G</td>
<td>344 (4)</td>
</tr>
<tr>
<td>22G</td>
<td>350 (1)</td>
</tr>
<tr>
<td>18G</td>
<td>329 (1)</td>
</tr>
<tr>
<td>18G</td>
<td>335 (1)</td>
</tr>
<tr>
<td>18G</td>
<td>344 (3)</td>
</tr>
<tr>
<td>18G</td>
<td>245 (3)</td>
</tr>
</tbody>
</table>
جدول ۲: نتایج بررسی‌های شاردهای در دکترین کوارتز نشته‌های کالیفورنیا

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Size (Micron)</th>
<th>L (%)</th>
<th>V (%)</th>
<th>Tn (msec)</th>
<th>Tb (msec)</th>
<th>Salinity (wt% NaCl equivalent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>15</td>
<td>80</td>
<td>20</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>75</td>
<td>25</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>3</td>
<td>60</td>
<td>70</td>
<td>30</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>80</td>
<td>20</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td>55</td>
<td>45</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td>85</td>
<td>15</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>7</td>
<td>75</td>
<td>0</td>
<td>30</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>8</td>
<td>30</td>
<td>65</td>
<td>35</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>70</td>
<td>30</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
<td>80</td>
<td>20</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>11</td>
<td>15</td>
<td>80</td>
<td>20</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>12</td>
<td>75</td>
<td>0</td>
<td>30</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>13</td>
<td>25</td>
<td>65</td>
<td>35</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>14</td>
<td>10</td>
<td>70</td>
<td>30</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>15</td>
<td>14</td>
<td>60</td>
<td>40</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>80</td>
<td>20</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>17</td>
<td>47</td>
<td>85</td>
<td>15</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>18</td>
<td>31</td>
<td>85</td>
<td>15</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>19</td>
<td>44</td>
<td>45</td>
<td>45</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td>80</td>
<td>20</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>21</td>
<td>15</td>
<td>85</td>
<td>15</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>22</td>
<td>6</td>
<td>90</td>
<td>10</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>23</td>
<td>10</td>
<td>75</td>
<td>25</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>24</td>
<td>50</td>
<td>80</td>
<td>20</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>25</td>
<td>30</td>
<td>70</td>
<td>30</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>26</td>
<td>25</td>
<td>80</td>
<td>20</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>27</td>
<td>25</td>
<td>85</td>
<td>15</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
<td>85</td>
<td>15</td>
<td>244</td>
<td>244</td>
<td>0.85</td>
</tr>
</tbody>
</table>
گازهایی به دام افتاده در انواع کاسارها با یکدیگر تفاوت دارند. به دلیل همین تفاوت‌ها نمی‌توان به عنوان اثری مثبت بر روی شاره‌های درکی می‌تواند با کاسارها استفاده کرد. در این پژوهش از کانی کوارتز بعنوان یکی از مهم‌ترین کانی‌های شفاف برای پوشش شاره‌های درکی استفاده شده است. خصوصیات ریخت‌شناختی و سنتگ‌شناختی شاره‌های درکی بوسیله [100] در حالت آتاق نیست شدن. شاره‌های درکی از نظر شکل ظاهری بیشتر می‌شوند. (Negative Crystals) نامنظم، پهن و انواعی با شکل بلور منفی هستند و اندازه‌ای این شاره‌ها از ۵ تا ۷۵ میکرون است. شاره‌های درکی مورد بررسی بر اساس ارتباط با کانی میزان به انواع اولیه، نانویه (شکل ۷ اف) و نانویه کاذب و بر اساس ارتباط با یکدیگر به انواع منفرد و دنبال‌دار (شکل ۷ ب و ت) رده‌بندی می‌شوند بر اساس بررسی‌های سنتگ‌شناختی بعضی از شاره‌های درکی پیدا به گردیده (شکل ۷ ب) از خوود نشان می‌دهد و این پدیده به کم‌شدن سطح موجود در محیط برایه‌ی واکنش‌های ۱ و ۲ تهیه می‌شود.

\[\begin{align*}
2\text{Cu}^{2+} + 2\text{H}_2\text{O} + \text{HCO}_3^- &\rightarrow \text{Cu}_2(\text{OH})_2\text{CO}_3 (\text{Mal}) + 3\text{H}^+ \\
3\text{Cu}^{2+} + 2\text{H}_2\text{O} + 2\text{HCO}_3^- &\rightarrow \text{Cu(OH)}_2(\text{CO}_3)_2 (\text{Azu}) + 4\text{H}^+
\end{align*}\]

پرستی‌های کانترالی و شاره‌های درکی بر روی روزش‌های کالکورنیت کوارتز در

 البرز شاره‌های درکی

امروز بررسی شاره‌های درکی یکی از راه‌های اساسی برای شناخت گونه‌های کاسارها و پی‌جویی احتمالات خصوصیات شاره‌های درکی نظیر ترکیب شاره، دما، چگالی و ماهیت

شکل ۶ (الف) بامت گرانولار رنگ‌دان کالکورپریت به کولوئیت در حاشیه (ب) باران تانه‌های گالن، کالکورپریت و کولوئیت‌همرنگ با کاسارگی رخ‌های منشی گالن (RPPL) بامت افقی کالکورپریت و همرنگ‌های آن با کاسارگی آباد مس (RPPL) جاشینی، همل‌یکیه پنل کاسارگی اولیه شده است (RPPL) کالکورپریت، کولوئیت، گالن، Hem، Gn، Ccp، و کالکورپریت، علم‌اتناری از [۲۳] افتیباس شده است. Ccp
شکل 7 تصاویر میکروسکوپی نانو دهندگی الگوی توزیع شاره‌های درگیر در کوارتزهای شاخه‌کن (الف) شاره‌های درگیر نانویی (ب) گردید.

انرژی بالاتر این شاره‌های درگیر وابسته است. با توجه به بررسی‌های انجم شری (Chips) و نمونه‌بندی کوارتز، جهانگر، شکل گرفته‌اند. شکل گرفته‌اند با توجه به بررسی‌های مشابه صفحه، حضور کالکوپریت نمی‌تواند توجه کالکوپریت گالن و مگنتیت در رگ‌ها در نتیجه تنش‌های انرژی این شاره‌ها در اثر پدیده جوشش است. وجود کالکوپریت و کالکوپریت بصورت نانویی که بسیار در اثر جوششی حاشیه کالکوپریت ایجاد شده است. ببینگر شریفتی رونده در و در نتیجه عمل شاره‌های با دمای 150 تا 25 درجه سانتیگراد روی کالکوپریت تشکل شده در مرحله قبل است. کالکوپریت اکسیده شده و هیدروکسید با قابلیت همانیت و گوتیتی از دکترسی کالکوپریت سولفیدی و اکسیدی در شرایط سطحی تشکیل شدند.
بررسی‌های کامپیوتری و شاره‌های درگیر بر روی رگ‌های کانی‌زایی کوارتز در...

شکل ۸
الف) شاره‌ی درگیر تک فازی گاز (V) (L) شاره‌ی درگیر دو فازی (V) فاز مایع و (L) فاز گاز، ب) شاره‌ی درگیر تک فازی آبگون (L) (V) شاره‌ی درگیر دو فازی (V) فاز گاز و (L) فاز آبگون.

شکل ۹
شوري شاره‌های درگیر نسبت به فراوانی آنها در نهشته در کالجومه.

شکل ۱۰
دماهای همگن شدن شاره‌های درگیر نسبت به فراوانی آنها در نهشته کالجومه.

گرمایی در بررسی‌های صحرایی و نیز همبستگی شاره‌های درگیر غنی از یکطرفی و غنی از این باعث می‌شود که در بررسی‌های میکروسکوپی لازم است [۱۲-۱۷]. در بررسی‌های آزمایشگاهی نشانه‌های نهشته و زرف‌ها سازی جوشش‌هایی از فرایندهای فیزیکی مهم در سامانه‌های زمینی گرمایی است [۱۲]. در رخداد فرایند جوشش، حضور برخی های
دال بر فرانسه جوشش در کالجیوه و وجود دارد زیرا در بررسی‌های سنجش‌گری‌های شاره‌های در گیرنده‌ای از فاز صاحب‌دریافت در همزمانی انواع غنی از فاز ناب قرار دارد. در بررسی‌های صحرایی، حضور کلسیم را به‌صورت دارای خطاف و شکستگی‌ها به صورت نهانی‌های کوچک تا بزرگ با سیلیس جانشینی‌شده و در نهایت به عنوان معرف تنش‌شسته از یک شاره در حال جوش [18] در نظر گرفته می‌شود، می‌توان به عنوان یکی از فرانسه‌های جوشش‌های تام برید. به منظور تعیین عمق و زرفا کانی‌سازی در زیر سطح قدمی آب‌های شرقی، می‌توان از منحنی‌های جوشش نسبت به زرفا استفاده کرد [17]. بدین منظور منحنی‌های جوشش نسبت به زرفا با استفاده از شرایط مناسب بازسازی چندین شکل [18] در مورد نشانده مورد بررسی زرفا کانی‌سازی، حدود ۴۰۰ متر برابر می‌شود. شاره‌های در گیرنده‌ای محیط‌هایی از فاز‌های غنی از در طلا دو فاز آب و بخار [19] قطعیه ذوب پایین‌تر دارد [111]. شوری کم‌ازای کانسپرس، اکنون حضور محالله‌های مقاومه را در صورتی که هر چند از طلا به‌صورت دارای مشاهده می‌شود، تا پایین‌تر و با هم اکنصپرس می‌باشد. این حضور طلا در نهایت از پیشگیری در شرایط جوشش در منطقه‌های کالجیوه به پاس کم یکتی و کانسپرسی تقسیم‌بندی در عمق ۴۰۰ متر رخ می‌دهد.

![グラフ](https://example.com/graph.png)

شکل 11: نمودار فراوانی داده‌های شاره‌های در گیرنده‌ای کانسپرسی با منحنی‌های جوشش نسبت به زرفا، منحنی‌های جوشش به H2O- NaCl عنوان مرجع نشان داده شده است [19].
References

[18] باک ع.، اکتشافات ذخاییر طلا، انتشارات دانشگاه تهران، (1381) 742 ص