کانسراهاي لايه كران روی و سرب با سنگ ميزبان رسوب عمارت و موجان: داده‌هاي جديد و برداشت‌هايي از چگونگي پيدايش

سمانه فضلي، غلامحسين شمعيانی* بنام شفيعي

گروه زمين‌شناسی، دانشکده علوم، دانشگاه کرمانستان

(دریافت مقاله: 3/10/1400، پذیرش نهایی: 9/9/1401)

چکیده: کانسراهاي روی و سرب عمارت و موجان در جنوب غرب اراک و در خست مياني كرمبند ملاير- اصفهان واقع شده‌اند. اين کانسراهاي بخصوص لايه كران درون سنگ ميزبان كردن يا باعث ويژه كردن آن را، تشكيل شده‌اند. كلي سازي در اين كانسراها بيشترين نوع پرگنشدي فضاي خالي و شال ساختن، گلاب، پرپيت و مقايد مكرمر كلاکورپت است که همراه با سپليسيات سنگ دوباره رخ داده است. اسلافیات فراوان و با يك سولفید است كه در مراحل تشكيل شده‌اند. گلاب به صورت فرعی همراه با سولفیدت و پس از ان شکل ندري، در اساس شاوه خطدي سپليسيت شده در مراحل چرا رخ داده است. در مراحل اول، كارخنزه‌هاي زين بلور بهطور كاملي جانشي سنگ ميزبان کردناند. اين سازه در طول مراحل دوم، مراحل تشكيل شده و شکافه‌هاي بين سنگ دوباره سپليسي با کارخنزه‌هاي درشت‌تر و گلو کردناند. همچنین مي‌تواند در مراحل چرا رخ دهد. بر اساس نتایج، از عددگردي به كماني زين درآمدي، کارخنزه‌هاي درشت‌تر و گلو به همراه سولفیدت به كماني زين مربوط است. این مراحل تشكيل شده پس از کارخنزه‌هاي زين افتاده است. اين کارخنزه‌هاي درشت‌تر و گلو به كماني زين مربوط است. این مراحل تشكيل شده پس از کارخنزه‌هاي زين افتاده است.

واژه‌هاي کليدي: روی و سرب، سپليسيت، ايزوتروپي، پاس، اصفهان، عمارت، موجان.

مقدمه

کرمبند فارسي‌ماه - اصفهان بخشی از زون سنجد- سیرجان است که با رستگاری شمال غرب - جنوب شرق و وسعت حدود 2400 كيلومتر مربع [1], بین طول‌های جغرافیایی 55° 48' و 35° 32' قرار گرفته‌است (شكل – 1). این ناحیه بخش عمده‌اي از استان‌های مرکزي، اصفهان و همدان و بخش كمتری از استان‌های هرمزستان و تهران به دست بر می‌گرد [2]. و ميزبان عتاق زيتاي كارخنزه و نشانيه معدني سرب و روی مانده.*

shamanian@yahoo.com

نويسنده: سمانه فضلي، تلفن: 09141111576/09141111577، نمایر: 021/42422777 (8171)، پست الکترونيكي: شمانیان@یاهو.کم

[Downloaded from jemir.ir on 2022-01-16]
مناطق درگرسنگی بطور متفاوت نمونه‌برداری شد. بررسی‌های دقیق آزمایشگاهی شامل بررسی‌های اجرایی و کانی‌شناسی کانسک و سنگ میزان، جمع‌آوری داده‌های تجزیه ایزوتوپی گرد و غربالی انجام گرفت. بررسی‌های بافتی و کانی‌شناسی به روش‌های میکروسکوپی روز 24 مقطع نارک و 23 مقطع صفحی انجام شد و 4 مقطع از نمونه‌های حاصل کانی‌شناسی به روش پوشت ایکس از سوی شرکت کانسک ایالوید شناسایی شدند. با (XRD) تلفیق نتایج حاصل از بررسی‌های صخیح و آزمایشگاهی دانشگاهی پاراژنی کانسک تعبیه شد. برای افزایش گیری نتایج، مشاهده‌های صخیح، بررسی‌های میکروسکوپی و داده‌های ایزوتوپی گرد و غربالی قرار گرفت و چگونگی تغییرات ایزوتوپی گرد و غربالی در روند مخلوط مختلف کانی‌سازی بررسی شده و درک برای تعیین خاستگاه بررسی‌های کانی سازی ارائه شد.

روش بررسی

برای آگاهی از ماهیت کانی‌سازی در کانسک‌های عمارات و موجدان، بررسی در دو بخش صخیح و آزمایشگاهی به انجام رسید. در بخش صخیح، کلیه ویژگی‌های ساختی و غیرساختی و چگونگی ارتباط بین پدیده‌ها در رخم‌های سطحی و زیرزمینی بررسی شدند. از جمله شیمیایی، سنگ‌میزان و

شکل 1: (الف) موقعیت زون سنندج- سیرجان و کرمان/ ملاز- اصفهان (مستطیل خط چوبی) در ایران. گستره مورد بررسی با مستطیل شیب‌های زیرزمینی بررسی شد.

شکل 2: (ب) نقشه زمین‌شناسی ناحیه معدن جنوب ارک زیر از نشانه پایه [18].
بحث و بررسی

زمین‌شناسی

زون سنجنگ - برج‌های که با طول حدود 15000 کیلومتر و عرض 1500 تا 2500 کیلومتر از دریای اروپه آغاز می‌شود و با استفاده شمال غربی - جنوب شرقی گسترش گرفته‌اند. این برج‌ها از طریق شریانهای اروپا - آسیا راه‌پیمایی کرده‌اند.

کاسپی به اثر حرکت‌های تبریزی که در زمین‌های تابشی و دما بامدادی و آبی (Klu) پوشیده شده‌اند. واحدهای سیگنه‌هایی که پر عناصر شیمالی و جنوبی به ناپای د اعتیباً با طول 15 کیلومتر و عرض متوسط 500 متر (فلک) و در میزان از سیگنه‌های کوه‌آبی ضخیم (Klu) را در نظر گرفته‌اند. شرایط کوه‌آبی، امتیاز‌های شیل در جنوب شرقی و طبیعت پایین‌ترین سطح شیل، بخش‌هایی از شیل و سطح سیگنه‌های تشکیل گرفته بوده‌اند. این بخش‌ها از سیگنه‌های اقیانوس نوتنس (Klu) بالا است و در بخش‌های کوه‌آبی سیلیسیک، نابوده به شیل و سیلیسیک شدن شدید با شیل. در سطح سیلیسیک (Klu) دارای بافت میکریتی و پیشتر از کلیسیت، کاتر اوری و قبیله‌های فرامولیتی تشکیل یافته‌اند. در منطقه‌های مورد بررسی از طرف سیگنه‌های آدرن مشاهده شده. در سطح میکروبرید و شیلیکون‌های آدرن سیگنه‌های ارتباطی رخ داده‌اند که در کاسپی شمس‌بند واقع در 12 کیلومتری شرق منطقه مورد بررسی است (Kul).

شکل 2: دنباله‌های لافنیتاسی در ناحیه‌های مختلف جنوب اراک با تغییرات از (Klu).
شکل ۲ نشان‌دهنده زمین‌شناسی کانسراهای عمرت و موجان با اصلاحات (از [۷]).

دلبری سنگ میزان سیلیسی و دولومیت‌شکن از دلبری سنگ‌های وابسته به کان-سازی در دو کانسراهای عمرت و موجان است. گروه دلبری سنگ‌سیلیسی از دلبری سنگ‌های نامعلوم در اغلب کانسراهای سرب و روی نوع مس سپی (MVT) است. [۲۰] ولی در کانسراهای مودرس بررسی به عنوان دلبری سنگ‌های محصول می‌باشد.

شکل ۲ نشان‌دهنده زمین‌شناسی کانسراهای عمرت و موجان با اصلاحات (از [۷]).

دلبری سنگ میزان سیلیسی و دولومیت‌شکن از دلبری سنگ‌های وابسته به کان-سازی در دو کانسراهای عمرت و موجان است. گروه دلبری سنگ‌سیلیسی از دلبری سنگ‌های نامعلوم در اغلب کانسراهای سرب و روی نوع مس سپی (MVT) است. [۲۰] ولی در کانسراهای مودرس بررسی به عنوان دلبری سنگ‌های محصول می‌باشد.
کانسارهای لايه کران روی و سرب با سنگ میزان رسوبی عمارت...
جدول ۱: دنباله‌ی پرازنتی عمومی در دو کلسار روی و سرب عمارت و موچان

<table>
<thead>
<tr>
<th>ماده</th>
<th>استالاسیت‌های ترسک‌دان</th>
<th>استالاسیت‌های ترسک‌دان</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>هردو کلسار روز</td>
<td>هردو کلسار روز</td>
</tr>
<tr>
<td></td>
<td>۸</td>
<td>۸</td>
</tr>
<tr>
<td></td>
<td>۷</td>
<td>۷</td>
</tr>
<tr>
<td></td>
<td>۶</td>
<td>۶</td>
</tr>
<tr>
<td></td>
<td>۵</td>
<td>۵</td>
</tr>
<tr>
<td></td>
<td>۴</td>
<td>۴</td>
</tr>
<tr>
<td></td>
<td>۳</td>
<td>۳</td>
</tr>
<tr>
<td></td>
<td>۲</td>
<td>۲</td>
</tr>
<tr>
<td></td>
<td>۱</td>
<td>۱</td>
</tr>
</tbody>
</table>

اسفالتیت‌های ترسک‌دان کانی‌سنگی در هردو کلسار مواد برسبی است که با اندازه‌ی ۲۰ تا ۳ میلی‌متر به صورت پرازنتی حفره‌های زیر به رختی از استالاسیت‌های حفره‌های رز و رزگاه مشاهده می‌شود. بر اساس این مشاهدات، استالاسیت‌های طی دو مرحله تشکیل شده است. استالاسیت‌های مرحله ی اول (I) از نوع غنی از اهند است که با رنگ قهوه‌ای مشابه به سیاه، حاشیه‌ی سیندرم و پازتاب داخلی قهوه‌ای مشخص می‌شود (شکل-۵ اف-پ). استالاسیت‌های مرحله دوم (II) از نوع مختلف از اهند است و قهوه‌ای عسلی رنگ با پازتاب داخلی زرد است (شکل-۵ پ). گالن با اندازه‌ی ۱،۰۰ تا ۳ میلی‌متر به صورت پرازنتی حفره‌ها و رزگاه‌های تخاصم دارد. این کانی فلز موثر بر مرحله و هم زمان با استالاسیت‌های مرحله ی اول (شکل-۵ الف-پ)، با درصد دوم (شکل-۵ ب) تشکیل شده و کانی‌سازی آن پس از استالاسیت ادامه یافته‌است (شکل-۵ ت). در برخی از بلوهای گالن اثر نیروهای فشارشی که با وجود رخ‌های منحی شکل، مشخص می‌شود، قابل ملاحظه‌است.

گالن‌سازی بی‌پی سه شکل متغیر مشاهده شده‌اند: (۱) پی‌پری‌های فرآیندی با تظاهر افزایش و حداکثر اندازه‌ی ۲ میلی‌متر در واحدهای Ks (۲) پی‌پری‌های شکل‌دار (شکل-۵ ت) و (۳) با فاکتور تواناکلستیک (شکل-۵ ج) وابسته به پیش از کانی‌سازی گالن و استالاسیت‌های پی‌پری‌های شکل‌دار تا نیمه‌ای کانی‌سازی.
این ضمیمه به طور عجیبی و غیرقابل درک ترکیبی ایزوتوپی گوگرد پس از تعبیه دنباله پارازنی کانی‌ها در کانسارهای "مورد بررسی"، جفت کانی‌های همدار اسفالتیت - گالن از مراحل اول (I) و دوم (II) کانی‌سازی در کانسار عمارت و مرحله اول (I) در کانسار موچان جداسازی و تجزیه شدند. این جفت کانی‌ها در مرحله دوم کانی‌سازی در کانسار موچان، به دلیل کوچک بودن اندازه کانی‌ها مورد بررسی قرار گرفت. علاوه بر این، یک نمونه از پیربر از نوع دوم در کانسار عمارت جداسازی و تجزیه شد. نتایج ترکیب ایزوتوپی گوگرد در کانی‌های مورد بررسی در جدول ۲ خلاصه شده است. مقادیر \(\delta^{34}S \) کانی‌های سولفاتی در دو کانسار عمارت و موچان از ۴.۸ در هزار تا ۱۱.۳ در هزار تغییر می‌کند. بیشترین مقدار \(\delta^{34}S \) به اسفالتیت‌های مرحله I در کانسار عمارت وابسته بوده و کمترین مقدار آن به گالن‌های مرحله I در کانسار موچان وابسته است (شکل ۲). در کانسار عمارت مقادیر \(\delta^{34}S \) اسفالتیت و گالن مرحله I بیشتر از مقادیر \(\delta^{34}S \) اسفالتیت و گالن مرحله II است به طوری که مقدار \(\delta^{34}S \) اسفالتیت مرحله I به مقدار \(\delta^{34}S \) اسفالتیت مرحله II بیشتر از مقدار \(\delta^{34}S \) گالن مرحله I به مقدار \(\delta^{34}S \) گالن مرحله II است.

تشکل ۶ نمونه‌ای از نتایج کانی‌شناسی به روش XRD برای شناسایی کانی‌های یافت در کانسار عمارت.

درسی در جدول ۲ خلاصه شده است. مقادیر \(\delta^{34}S \) کانی‌های سولفاتی در دو کانسار عمارت و موچان از ۴.۸ در هزار تا ۱۱.۳ در هزار تغییر می‌کند. بیشترین مقدار \(\delta^{34}S \) به اسفالتیت‌های مرحله I در کانسار عمارت وابسته بوده و کمترین مقدار آن به گالن‌های مرحله I در کانسار موچان وابسته است (شکل ۲). در کانسار عمارت مقادیر \(\delta^{34}S \) اسفالتیت و گالن مرحله I بیشتر از مقادیر \(\delta^{34}S \) اسفالتیت و گالن مرحله II است به طوری که مقدار \(\delta^{34}S \) اسفالتیت مرحله I به مقدار \(\delta^{34}S \) اسفالتیت مرحله II بیشتر از مقدار \(\delta^{34}S \) گالن مرحله I به مقدار \(\delta^{34}S \) گالن مرحله II است.
که وجود مقدار بالاتر δ^{34}S در اسفلاریت نسبت به گالن معرف تعادل ایزوتیپ این دو کانی [39] در هر دو کانسار مورد بررسی است. اختلاف در مقدار δ^{34}S کانی‌های گوگودار هم‌زدای وابسته به دما است و با افزایش دمای کانی‌های ایزوتیپ این دو کانی می‌توان دمای کانی سازی را تعیین کرد [40]. در کانسارهای عمارت و موجان، از جهت کانی‌های اسفلاریت و گالن هم‌زدای برای تعیین دما استفاده شد (جدول ۲). در کانسار عمارت دمای کانی سازی در مرحله اول و دوم به ترتیب ۱۰۱.۳ و ۱۱۳.۵ درجه سانتی‌گراد بوده که نسبت مراحل پایانی کانی‌های اسفلاریت و گالن که به ترتیب در پیریت و اسفلاریت و گالن کاهش می‌یابد [37] و موجب غنی‌شدن δ^{34}S در پیریت می‌شود [41] به این ترتیب، در کانسار عمارت وجود پیریت‌های با δ^{34}S بی‌بکتر اسفلاریت می‌تواند معرف عدم تعادل ایزوتیپ این دو کانی و تشکیل آنها در زمان و شرایط مختلف باشد. در حالت نسبت به مرحله مشابه خود در کانسار عمارت پیشرفت است (شکل ۸).

جدول ۲ ترتیب ایزوتیپ گوگرد در کانی‌های سولفیدی و دمای ایزوتیپی محاسبه شده بر اساس این نتایج، عامل جدایی از [42].

| T_{Sp-Ga} (°C) | $\Delta^{34}S_{Sp-Ga}$ | $\Delta^{34}S_{CDT}$ (در هزاره) | شماره کانی | نتایج
|-----------------|----------------------|------------------------|----------|
| ۱۱۳/۸ | ۳/۹ | ۰/۱۰۶ | کانی (I) | E_3
| | | ۰/۹۰۹ | پیریت | E_4
| ۱۰۱/۳ | ۳/۳ | ۰/۱۰۸ | کانی (II)| E_5
| | | ۰/۸۶۹ | پیریت | E_6
| ۱۱۳/۸ | ۳/۲ | ۰/۱۰۷ | کانی (I) | E_3
| | | ۰/۹۰۷ | پیریت | E_4
| ۱۱۳/۸ | ۳/۱ | ۰/۱۰۶ | کانی (II)| E_5
| | | ۰/۸۶۹ | پیریت | E_6

شکل ۷ تغییرات ایزوتیپی گوگرد (δ^{34}S) در مرحله مختلف کانی‌های اسفلاریت و موجان.
شکل ۸ مقاله‌های دمای ایزوتوبی در کانسارهای عمارت و موجان.

کانسارهای عمارت و موجان، با توجه به دمای کانساری (۱۲۳/۸ تا ۱۳۴/۳ درجه سانتی‌گراد)، دامنه‌های محدود تغییرات در بافت‌های مختلف سطحی (۳۴٪) دارد. در ده‌های سانتی‌گراد فرامی‌سازی یکی از امکانات اصلی کانسارهای عمارت و موجان است. در اینجا، فرآیند اصلاح سطحی با کانسارهای عمارت و موجان باعث ایجاد انرژی بیشتر در دمای سانتی‌گراد می‌شود. فرآیند این است. بنابراین نسبت به سطح‌های دیگر از کانسارهای عمارت و موجان، در حوزه‌های کانسارهایعمارت و موجان ممکن است. در اینجا، فرآیند اصلاح سطحی با کانسارهای عمارت و موجان باعث ایجاد انرژی بیشتر در دمای سانتی‌گراد می‌شود. فرآیند این است. بنابراین نسبت به سطح‌های دیگر از کانسارهای عمارت و موجان، در حوزه‌های کانسارهایعمارت و موجان ممکن است. در اینجا، فرآیند اصلاح سطحی با کانسارهای عمارت و موجان باعث ایجاد انرژی بیشتر در دمای سانتی‌گراد می‌شود. فرآیند این است. بنابراین نسبت به سطح‌های دیگر از کانسارهای عمارت و موجان، در حوزه‌های کانسارهایعمارت و موجان ممکن است.
سیرجان همگامان با فعال بودن روییداد فوران‌شی (اجتماعتاً نا انسن)، در این زون تشکیل شده‌اند. توجه به نقش این رویداد در فاز‌بندی به‌ویژه در استحکام و زیست‌پردازی زمین از این نظر روند شناسی کارآمد است. نظر ایران‌کوه در ایران (41). تحقیق در امکانات (120) و طوفان‌های که به‌دردی MVT بررسی به‌ویژه MVT است (جدول ۳). کانسارهای از شرایط‌های واپس به رویدادهای زمین‌ساخت یکی از جدول ۲ مقایسه ویژگی‌های زمین‌شناسی، کانی‌شناسی، دگرگونی و ایزوتایپی‌های موجود در کانسارهای فلوریدا کانی‌نوری، تحقیق ایران‌کوه با

کانسارهای عمارت و موچان.

۷۶ مجله بولشی‌نشینی و کانی‌شناسی ایران
فضلی، شمعیان، شفیعی

۷۶ مجله بولشی‌نشینی و کانی‌شناسی ایران
فضلی، شمعیان، شفیعی
شکل 9 مدل پیشنهادی از شکل‌گیری کنان‌هایی از میان‌رودری و موجان. الف) همکاری و رده‌های غربی و ایران و سه‌شانش اقیانوس نيونتن در پیش‌زمین نوع آن‌های ۱۶. ب) برگنگایی گستره‌ای (a) در شکل اله: فشردگی زمین‌ساختی و فعالیت سبک‌چیهای و تشکیل شوراهایی غنی از غلظ، سیلیکا و CO₂ (b) در شکل: به هماهنگ شورای‌های بسیار سنگ‌های اکی بخش K1 گسترش درگرسی سیلیسی و نهشت سولفید‌ها ناتمام‌ها اختصاص میدادند. که: کنگلومری و ماسه‌سنگی Ks مارن و سنگ Kc. اکی: سنگ‌های اوربرولین دار، Ks مارن و سیلیت.

مراجع

[1] رحیمی پور نبای، حجتی ابرسری کنان‌هایی از میان‌رودری و موجان. ایران. پایان نامه کارشناسی ارشد، دانشگاه شیراز (۱۳۷۹) ص ۲-۲۳.

[2] قربانی، محمد، ابرسری و انگلیسی، شیمیایی ترکب‌های شیمیایی اولیه و نهشت کنان‌های از میان‌رودری و موجان. پایان نامه کارشناسی ارشد، دانشگاه شیراز (۱۳۸۴) ص ۲-۲۳.

[42] Gomes F.F., Both R.A., Mangas, J., Arribas A., "Metallogensis of Zn-Pb carbonate-hosted mineralization in the Southeastern Region of the Picosde Europe (Central Northern Spain) Province: geologic, fluid inclusion, and stable

