کاربرد آنالیز مولفه‌های اصلی در جهت شناسایی آنومالی‌های زئوشبیمایی در ناحیه هلاک- آباد، سیبزوار

میلیچ قورچی)، محمد حسن کریمی‌پور، خسرو ابراهیمی)

1- گروه زمین‌شناسی دانشکده علوم، دانشگاه فردوسی مشهد
2- گروه زمین‌شناسی دانشکده علوم، دانشگاه فردوسی مشهد

چکیده: منطقه‌های هلاک در سیبزوار واقع شده است. بازالت، آندزیت و هورلبند آندزیت‌سنگ‌های کوهی از مجموعه رخته‌ای یافته در منطقه‌ی مورد بررسی است. مونزونیت، کوارتز دیوریت، کوارتز موزنژوریت و هورلبند کوارتزی (Principal component analysis) مونزونیت‌بریت در سنگ‌های آنالیزشی نفوذ کرده‌اند. تجزیه و تحلیل مولفه‌های اصلی (Principal component analysis) روش‌هایی است که می‌تواند به‌هدف آشکارسازی گواهی به کمک روش‌هایی که می‌توانستار ایجاد شود. از این روش برای اشتباه در تحلیل‌هایی با در نظر در بردن روابط داده‌های زئوشیمیایی سطحی در حجم بالا استفاده شده است. این روش برای تحلیل مولفه‌های اصلی نمونه‌های زئوشیمیایی آب‌های منطقه‌های هلاک آباد به طور کلی تغییرات عناصر را در یک مولفه مشخص می‌کند. نتایج بررسی‌ها حاکی از آن‌ها است که مولفه‌های الول در مورد عناصر Ni، Zn، Cr، Co و Niکل-کروم و زئوشیمیایی در منطقه‌های هلاک آباد قرار گرفته است. تحلیل مولفه‌های اصلی در ناحیه‌های هلاک-آباد نشان داد که حداکثر در مورد عناصر مشابه و ریوی نوع هرمایی عناصر کاذب‌های سطحی است.

واژه‌های کلیدی: تحلیل مولفه‌های اصلی، زئوشیمیایی، دگرگونی، سیبزوار، هلاک-آباد

مقدمه
داده‌های زئوشیمیایی نشان دهنده بیشتری از روی‌ها نک متفاوت‌های و نیز روی‌ها جنگ منطقه مختلفی مانند روی‌های زمین‌شناسی، هندسه‌های فرکتال، جلوی سرپ، N منطق فازی، تحلیل شبکه‌های عملیاتی پیچش‌های از هدف‌های مهم بررسی‌های زئوشیمیایی، تحلیل و پردازش داده‌ها و آمارسازی بهینه‌ی هاست. کاهش مساحت ناحیه مورد بررسی به بهینه‌سازی

m.ghoorchi@yahoo.com

نویسنده مسئول تلفن: ۶۳-۹۵۱۱۵۴۳۲۲۲-۲۳۰۰۱۰۱۰۱۱۱۱۱۵۱
پ) برداشت بیش از ۲٠٠٠ نمونه برای بررسی سنگ‌نهادن و
درگاسانی
ت) ایجاد بانک اطلاعاتی از داده‌های زئوشیمیایی (۸۵ نمونه
رسوب آبراهای و ۶۸ نمونه خردمسنگی) و اطلاعات دیگر
زمین شناسی و ساختاری

شکل ۱. الاف. رخش‌های سنگ‌نهادن در استان خراسان رضوی. موقعیت منطقه‌ی مورد بررسی به شکل مستطیل روى کمرنگ جنوب سبزور
نماش داده شده است. ب. نقشه زمین شناسی منطقه‌ی هلاک آباد.
در گسترشی مورد بررسی، زونهای فنوز مدل هایه گسترش زبادی با روند تقاطعی از زوایی درمان و سمای مشخص در منطقه ایجاد کرده و بررسی یافته در این کمپیوتر در گسترشی از روش کرمیتیک و ارزانیک که در ناحیه منطقه‌ای از زوایای زبانی بهبودی یافته است. در بهبودی، در زبانی گسترش محوری دارد و گام سیستم سیستم دندی در زبانی سیستم دندی و یک دستگاه. مجموعه داخلی‌ها از نظر تکنولوژی است. مجموعه یک دستگاه مورد بررسی یافته شده است [23].}

بله که گسترش مورد بررسی در پایان تئوری و تجربی اصلی با اینکه تعداد تئوری باید تحلیل، احتمال نمایش می‌باشد. مورد نظر را در گسترشی از منطقه‌ای ENVI مورد بررسی با استفاده از روش کرمیتیکی است. اصلی‌ترین مدلی تئوری و احتمال نمایش می‌باشد. مورد نظر را در گسترشی از منطقه‌ای ENVI مورد بررسی با استفاده از روش کرمیتیکی است. اصلی‌ترین مدلی تئوری و احتمال نمایش می‌باشد. مورد نظر را در گسترشی از منطقه‌ای ENVI مورد بررسی با استفاده از روش کرمیتیکی است. اصلی‌ترین مدلی تئوری و احتمال نمایش می‌باشد. مورد نظر را در گسترشی از منطقه‌ای ENVI مورد بررسی با استفاده از روش کرمیتیکی است. اصلی‌ترین مدلی تئوری و احتمال نمایش می‌باشد. مورد نظر را در گسترشی از منطقه‌ای ENVI مورد بررسی با استفاده از روش کرمیتیکی است. اصلی‌ترین مدلی تئوری و احتمال نمایش می‌باشد. مورد نظر را در گسترشی از منطقه‌ای ENVI مورد بررسی با استفاده از روش کرمیتیکی است. اصلی‌ترین مدلی تئوری و احتمال نمایش می‌باشد. مورد نظر را در گسترشی از منطقه‌ای ENVI مورد بررسی با استفاده از روش کرمیتیکی است. اصلی‌ترین مدلی تئوری و احتمال نمایش می‌باشد. مورد نظر را در گسترشی از منطقه‌ای ENVI مورد بررسی با استفاده از روش کرمیتیکی است. اصلی‌ترین مدلی تئوری و احتمال نمایش می‌باشد. مورد نظر را در گسترشی از منطقه‌ای ENVI مورد بررسی با استفاده از روش کرمیتیکی است. اصلی‌ترین مدلی تئوری و احتمال نمایش می‌باشد. مورد نظر را در گسترشی از منطقه‌ای ENVI مورد بررسی با استفاده از روش کرمیتیکی است. اصلی‌ترین مدلی تئوری و احتمال نمایش می‌باشد. مورد نظر را در گسترشی از منطقه‌ای ENVI مورد بررسی با استفاده از روش کرمیتیکی است. اصلی‌ترین مدلی تئوری و احتمال نمایش می‌باشد. مورد نظر را در گسترشی از منطقه‌ای ENVI مورد بررسی با استفاده از روش کرمیتیکی است. اصلی‌ترین مدلی تئوری و احتمال NEXIS 12174 7273 از نظر است. این در سال 2001 تئوری برداری شده است. به منظور کاهش اثرات جوی و هنجار کردن داده‌های 1LB نخست این داده‌ها با
پی چنایی‌های زنده‌بی‌سایی
یکی از هدف‌های پی‌چنایی‌های دستیابی به تمرکز غیرعادی عناصری است که به کاپی‌سازی و استفاده در منطقه‌ی مورد بررسی دو رشته نمونه‌برداری از رسوپ‌های آب‌های و نمونه‌برداری سنجی انجم شده است. بخشی از داده‌های زنده‌بی‌سایی مورد استفاده در این پژوهش، به برداشت‌های زنده‌بی‌سایی آب‌های وارگی شسته‌بان است که توسط کارشناسان شرکت جیاگن‌ک (Jiangxi) انجام شده است. این شرکت طی قراردادی که با سازمان زمین‌شناسی ایران دارد، بررسی‌های زنده‌بی‌سایی آب‌های 24 برغه 100000 در کمربند سمانان - کاشیر را بر حذف انجم شده است. برای برداشت این نمونه‌ها از یک شبکه‌ی نمونه‌برداری منظم به ابعاد تقیبی (یا IARR) در تغییر (SWIR) در باند 30 متر یا باند 15 متر (VNIR) با توان تنفکیک مکانیکی بیلیت استفاده شد.[۲۵]

با تحلیل مولفه‌های اصلی جهت دار از نوارهای ۱۴ و ۲۷ برای پارازسایی کاپی‌سازی، مقادیر مناسب برای به نمایش درآوردن آن، در تصویر مولفه‌های اصلی پیچارچم با رنگ روش ی یک مشخص شد (شکل ۲). به منظور نشان دادن بهتر آن‌چه‌ی با توجه به ویژگی‌های طرف جنوب و بارانه آن، نوارهای ۵ و ۷ برای انجام مورد استفاده قرار گرفتند. آن‌لاین در نوار ۵ با نوار جنوبی و در نوار ۷ نوار نزدیک دارد. بررسی آماری تصاویر (جدول ۱) نشان داد که در مولفه‌های سوم منفی شده نواحی

جدول ۱	نتایج روش کروستا برای پارازسایی آن‌لاین.				
باند	مولفه				
Pe1	۲۴۳۴۴	۲۳۴۴۴	۰.۶۸۵۹	۰.۶۷۶۱	۰.۶۳۲۴
Pe2	۲۴۳۴۴	۲۳۴۴۴	۰.۶۸۵۹	۰.۶۷۶۱	۰.۶۳۲۴
Pe3	۱۸۴۹	۱۰۰۹۰	۰.۶۳۹۷	۰.۶۳۹۷	۰.۶۳۹۷
Pe4	۶۳۴۴۴	۶۳۴۴۴	۰.۶۸۵۹	۰.۶۷۶۱	۰.۶۳۲۴

شکل ۲ تصویر مولفه‌های چهار که از تحلیل مولفه‌های اصلی روز نوارهای ۵ و ۷ برای نمایش کاپی‌سازی به دست آمده است.

استفاده از روش بارانی متوسط نسبی داخلی (IARR) تغییر (SWIR) در باند ۳۰ متر یا باند ۱۵ متر (VNIR) با توان تنفکیک مکانیکی بیلیت استفاده شد. سپس گستره‌ی ۶ نواری فرورسخ موج کواتن (با توان تنفکیک مکانیکی مکانیکی بیلیت استفاده شد [۲۵]).
سازی در دانشگاه فردوسی مشهد، به روش طیف‌سنجی جذب اتمی، برای عنصر مس، سرب، روی، نقره، آنتیومون و در تعدادی از نمونه‌ها برای مولیبدن تجزیه شدند. در این پژوهش نتایج تجزیه 31 نمونه زئوشیمیایی رسوب‌های آبزیان و نمونه خرد‌سنجی از پی‌جویی‌های بالا مورد بررسی قرار گرفتند.

موضعیت برداشت نمونه‌های زئوشیمیایی رسوب‌های آبزیان و خردان-سرین (ویک) در دیل داده‌های حاصل بر مکان سطح مورد نمونه برداری نسبت داده شدند. از کل گشتی‌های موجود نمونه‌برداری شده در منطقه‌ی مورد بررسی، نتایج تجزیه 34 نمونه برای بررسی ناحیه‌های مناسب استفاده شدند. نمونه‌های حجم‌آوری شده 28 عصر (نفره، ارسینک، طلا، باریم، برومیوم، کالر، بریم، قلزور، جیوه، لیتیوم، مولیبدن، نیومور، نیکل، فسفر، سرب، روی، آنتیومون، قلع، استرسیم، توریم، اورانیوم، وانادیوم، تینکستن و روی) و یک اکسید فلزی (اکسید سدیم (Na2O) تجزیه شیمیایی شده‌اند.

[۲۷] بخش‌های دیگر نمونه‌های زئوشیمیایی توسط شبایی [۲۷].

[۲۸] و مظول [۲۹] برداشت شدند. محل‌های مناسب برای برداشت نمونه‌ها براساس نقشه‌های زمین‌شناسی، دگرسانی، نوی‌گرای و تصور ماهواره‌ای برداشت شده، انتخاب شدند. نمونه‌ها پس از فراکسیون خردانی، نرم‌سازی و آماده-
آماده سازی و ساماندهی اطلاعات در پایگاه داده اطلاعات

جغرافیایی

یکی از مدل‌های داده‌ای که در افزار ArcGIS از آن پشتیبانی می‌کند مدل داده‌ای زئودبتایس است. با ایجاد آن می‌توان تمامی اطلاعات جغرافیایی را در یک پایگاه داده نگهداشته و مدیریت کرد. از این‌رو این مدل اکنون وبرای هم زمان چندین کاربر روی یک پایگاه داده، نگهداری داده‌های حجمی و ایجاد سرعت عمل بیشتر در تحلیل‌های بخی از

کاربردهای ArcGIS منوط به استفاده از این مدل داده‌ای است. لذا در این بروز، نخست یک پایگاه مسنج و

استاندارد آماده شده نشته‌ها (زمین‌شناسی، گسل‌ها، اطلاعات

دگرسانی و کانال‌سازی) نتایج برداری تصاویر ماهواره و

مووقعیت نمونه‌های زئوشیمیایی در پایگاه داده جغرافیایی با

شده به صورت دقیق ذخیره شده. لاحقی زئوشیمی‌شامل

اطلاعات تجزیه‌شیمیایی 88 نمونه‌ی سنگی و 85 نمونه‌ی

رسوب‌های ایزومتری است. غالب نمونه‌ها شامل اطلاعات و

 enquation

نام‌های آریورسپتیا یکی از اجزای آن می‌باشد که مدل داده‌ای زئودبتایس است. با ایجاد آن می‌توان تمامی اطلاعات جغرافیایی را در یک پایگاه داده نگهداشته و مدیریت کرد. از این‌رو این مدل اکنون وبرای هم زمان چندین کاربر روی یک پایگاه داده، نگهداری داده‌های حجمی و ایجاد سرعت عمل بیشتر در تحلیل‌های بخی از

کاربردهای ArcGIS منوط به استفاده از این مدل داده‌ای است. لذا در این بروز، نخست یک پایگاه مسنج و

استاندارد آماده شده نشته‌ها (زمین‌شناسی، گسل‌ها، اطلاعات

دگرسانی و کانال‌سازی) نتایج برداری تصاویر ماهواره و

مووقعیت نمونه‌های زئوشیمیایی در پایگاه داده جغرافیایی با

شده به صورت دقیق ذخیره شده. لاحقی زئوشیمی‌شامل

اطلاعات تجزیه‌شیمیایی 88 نمونه‌ی سنگی و 85 نمونه‌ی

رسوب‌های ایزومتری است. غالب نمونه‌ها شامل اطلاعات و

نام‌های آریورسپتیا یکی از اجزای آن می‌باشد که مدل داده‌ای زئودبتایس است. با ایجاد آن می‌توان تمامی اطلاعات جغرافیایی را در یک پایگاه داده نگهداشته و مدیریت کرد. از این‌رو این مدل اکنون وبرای هم زمان چندین کاربر روی یک پایگاه داده، نگهداری داده‌های حجمی و ایجاد سرعت عمل بیشتر در تحلیل‌های بخی از

کاربردهای ArcGIS منوط به استفاده از این مدل داده‌ای است. لذا در این بروز، نخست یک پایگاه مسنج و

استاندارد آماده شده نشته‌ها (زمین‌شناسی، گسل‌ها، اطلاعات

دگرسانی و کانال‌سازی) نتایج برداری تصاویر ماهواره و

مووقعیت نمونه‌های زئوشیمیایی در پایگاه داده جغرافیایی با

شده به صورت دقیق ذخیره شده. لاحقی زئوشیمی‌شامل

اطلاعات تجزیه‌شیمیایی 88 نمونه‌ی سنگی و 85 نمونه‌ی

رسوب‌های ایزومتری است. غالب نمونه‌ها شامل اطلاعات و

نام‌های آریورسپتیا یکی از اجزای آن می‌باشد که مدل داده‌ای زئودبتایس است. با ایجاد آن می‌توان تمامی اطلاعات جغرافیایی را در یک پایگاه داده نگهداشته و مدیریت کرد. از این‌رو این مدل اکنون وبرای هم زمان چندین کاربر روی یک پایگاه داده، نگهداری داده‌های حجمی و ایجاد سرعت عمل بیشتر در تحلیل‌های بخی از

کاربردهای ArcGIS منوط به استفاده از این مدل داده‌ای است. لذا در این بروز، نخست یک پایگاه مسنج و

استاندارد آماده شده نشته‌ها (زمین‌شناسی، گسل‌ها، اطلاعات

دگرسانی و کانال‌سازی) نتایج برداری تصاویر ماهواره و

مووقعیت نمونه‌های زئوشیمیایی در پایگاه داده جغرافیایی با

شده به صورت دقیق ذخیره شده. لاحقی زئوشیمی‌شامل

اطلاعات تجزیه‌شیمیایی 88 نمونه‌ی سنگی و 85 نمونه‌ی

رسوب‌های ایزومتری است. غالب نمونه‌ها شامل اطلاعات و

نام‌های آریورسپتیا یکی از اجزای آن می‌باشد که مدل داده‌ای زئودبتایس است. با ایجاد آن می‌توان تمامی اطلاعات جغرافیایی را در یک پایگاه داده نگهداشته و مدیریت کرد. از این‌رو این مدل اکنون وبرای هم زمان چندین کاربر روی یک پایگاه داده، نگهداری داده‌های

از انگیزه که بررسی همبستگی عناصر با روش تحلیل

مولفه‌ای اصلی نسبت به بررسی تک تک عناصر سودنادر

برکندگی رزروشیمیایی ArcGIS است. نخست در نرم آفزار ArcGIS

کلیه عناصر به صورت نقشه‌های رستشی تهیه و با فرم‌گیری

ذخیره شدند. نقشه‌های دریاچه‌ای شده به صورت مجزا آماده و

برای تحلیل به کار گرفته شدند. برای مثال شکل 5 نمونه

نقشه‌های دریاچه‌ای شده در مورد عنصر سر ناشان می‌دهد.

در شکل 6 نمایش داده شده مقايسه مقادیر برداری#

ویژه، تنها برای دو دو مولفه اصلی نسبت به هم ارائه شدند.

آنالیز داده‌ها

با استفاده از الگوریتم محاسباتی در نرم آفزار

مولفه‌ای اصلی روی داده‌های رستشی شده صورت گرفت.

تحلیل مولفه‌های اصلی روی داده‌های زئوشیمیایی آب‌راهای

منطقه مورد بررسی اعمال شدند که در آن 16 عنصر آنالیز

شده شکل داده شدند و 16 مولفه‌ی اصلی (PC) تشکیل

شده. نمایش سهم اطلاعات و متنگردها در 16 مولفه‌ی اصلی به

دست آمده از بررسی رسوب‌های آب‌راهای در شکل 7 ارائه

شدند.

3- Geodatabase
شکل ۵ نمایش دهنده توزیع عنصر مس در رسوب‌های آبراهیای منطقه. گستره‌ی مورد بررسی به شکل مستطیل باریک دیده می‌شود.

شکل ۶ مقایسه‌ی مقادیر بردار ویژه نسبت به یک‌دیگر برای دو مولفه اصلی [۲۳].

شکل ۷ نمایش سهم اطلاعات و متغیرها در ۱۶ مولفه‌ی اصلی به دست آمده از بررسی رسوب‌های آبراهیای.
های اصلی، پنج مولفه اول برای بررسی روند تغییرات ناحیه‌ای عناصر مناسب تشخیص داده شدند (جدول ۶). این پنج مولفه در مجموع حاوی ۹۵ درصد تغییرات شدند. هر مولفه معرف همراهی عناصری خاص است. در جدول بردارهای ویژه مقادیر کمتر از ۳ و بیشتر از ۰.۳ حذف شدند. با توجه به جدول بردارهای ویژه عناصر در مولفه-

جدول ۶ مقادیر بردار ویژه هر مولفه اصلی رسوبات آبراهامی (مقاومت کمتر از ۳ و بیشتر از ۰.۳ - حذف شده است)

<table>
<thead>
<tr>
<th>نویس</th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
<th>PC5</th>
<th>PC6</th>
<th>PC7</th>
<th>PC8</th>
<th>PC9</th>
<th>PC10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cs</td>
<td></td>
<td></td>
<td></td>
<td>۰.۴۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nb</td>
<td>۰.۶۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td></td>
<td>۰.۳۱</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TH</td>
<td></td>
<td></td>
<td></td>
<td>۰.۴۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Li</td>
<td></td>
<td></td>
<td></td>
<td>۰.۳۲</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰.۴۵</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰.۴۵</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sr</td>
<td></td>
</tr>
<tr>
<td>As</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰.۴۵</td>
</tr>
<tr>
<td>Pb</td>
<td></td>
</tr>
<tr>
<td>Zn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰.۴۵</td>
</tr>
<tr>
<td>Cu</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰.۳۵</td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>۰.۶۴</td>
</tr>
<tr>
<td>Cr</td>
<td></td>
</tr>
<tr>
<td>Co</td>
<td></td>
</tr>
</tbody>
</table>

شکل ۸ نمایش مقادیر بردارهای ویژه عناصر در مولفه اصلی شماره یک وابسته به رسوب‌ها آبراهامی.
شکل ۹ نمایش مقادیر بردارهای ویژه برای عناصر در مولفه اصلی شماره دو وابسته به رسوپهای ابراهیمی.

شکل ۱۰ نمایش مقادیر بردارهای ویژه عناصر در مولفه اصلی شماره سه وابسته به رسوپهای ابراهیمی.

مولفه اصلی شماره دو
این مولفه حدود ۲۰ درصد کل تغییرات را داراست. این مولفه ، وزن منفی برای عناصر Rb, Sr, Th, Ba وزن مثبت دارند مولفه ۲ عناصر Ba, Zn, و نیز Cr, Ni وزن منفی دارند. مس مشاهده می‌شود که عناصر مورد انتظار در (شکل ۸) همراه با سرب و فلور در سه مولفه گروهی نوع دیگری از منطقه بازی در منطقه باشد.

در مولفه دوم نواحی تهاتری مثبت عناصر Rb, Sr, Th, Ba نواحی تهاتری مثبت عناصر Rb, Sr, Th, Ba

مولفه اصلی شماره یک
مولفه ۱ بسیار قوی و حاوی ۲۵ درصد اطلاعات است و در مورد عناصر Th, Sr, Cs, Li, Cu, Zn, Co, V مشابه نشان می‌دهد (شکل ۸). عناصر F, Pb, Rb مثبت را در این مولفه وزن منفی دارند. در نتیجه به دست آمده برای مولفه اصلی شماره یک را نشان می‌دهد. بررسی‌ها حاکی از آن است که مناطق مثبت این مولفه اصلی با نقصی کاتالیزار منطقه همبستگی دارند. نتیجه به نظر می‌رسد که زونهای کاتالیزار اصلی در مولفه اصلی وزن منفی دارند. مثبت و هاله‌های نشانه‌های زئوئیمیایی وزن منفی دارند.
آنتنشانی همکارانی دارد. بررسی‌ها نشان می‌دهد که این مناطق (وزن مثبت) با مشاهده درگیری‌های همیستانگی بالایی دارند.

مولفه اصلی شماره سه

مولفه سوم شامل ۱۸ درصد کل تغییرات است (شکل ۱۰). Ni, Zn, Cr, Co عنصر مس در این مولفه وزن منفی دارد. در مولفه‌های دوم و سوم همراهی‌های دیده می‌شود. در مورد عنصر Ni با توجه به تاریک‌گردانی‌های هم‌هاران، مشخص می‌شود که جهت نظر پنهانی (۲۰۰۳) روز و منفی جا همیستانگی مشابه ندارند. همراهی ناهنجاری روز در منطقه دو کنون دیده می‌شود. اول همراه با مس، که در مولفه‌ای اول به صورت همراهی مثبت دیده شده و دوگانگی در مولفه‌های دوم و سوم می‌شود. به همراه با بردن، سرب و فلورور، سرب، تکرار می‌شود. مقدار Li بالایی در این مولفه به هاله‌های ناشی‌های زوشیمیایی وابسته است.

مولفه اصلی شماره چهار و پنج

مولفه چهار مشابه ۱۰ درصد کل تغییرات است. عنصر Ni با وزن منفی در این مولفه مشخص می‌شود. Cr, Zn, As عنصر بالاترین وزن‌ها مثبت را به خود اختصاص دادند. در مولفه‌ی پنجم همراهی سرب - ری - Cu, Zn, F, Sr را نشان می‌دهد.

شکل ۱۱: مولفه‌ای اصلی شماره سه عنصر تجزیه شده در نمونه‌های سنگی. مناطق روشن همراهی عنصر

Legend

| High: 538.5 | Low: 121.2 |

[Downloaded from ijcm.ir on 2022-01-15]
بررسی نکته عناصر سودماندار است. نشان داد که فراوانی عناصر در تحلیل مولفه‌ای اصلی روند تغییرات عناصر بهتر است. امتیازات فاکتوری نشان می‌دهد که عناصر جزء از هر فاکتور چه حداکثر بالاتر نسبت به روش‌های نیز نمی‌باشد. در نتایج به‌طور کلی مولفه‌های اصلی مولفه‌های زنده‌شماری ابراهیمی، تغییرات عناصر با بطور کلی می‌توان در پنج مولفه برداشت
نتایج به دست آمده حاکی از آن است که در منطقه‌های کاربرد روش‌های آنالیز جدید روش‌های علاوه بر انتخاب آماری بالاتر نسبت به روش‌های نیز دربرگرفته، در پی جویی‌های ناحیه ای نتایج بهتری نیز دربردارد. این امر علاوه بر یکک اطلاعاتی در مورد همبستگی عناصر در انتخاب می‌گذارد که نسبت به
روی و عناصر همراف آنها، در مولفه‌ها اول و دوم روند تقریبی شمال‌غریب - جنوب‌شرقی دارند که با روند سنگ‌های آذرین و مناطق دگرگونی همخوانی دارد.

مراجع
1- حسینی پاکعلی، یاراد. الیکس، 1364. تحلیل داده‌های اکتشافی، دانشگاه تهران.
5- Davis J.C., ”Statistics and Data Analysis in Geology”, John Wiley and Sons (WIE) (2002).
10- Panahi A., Cheng Q., Bonham-Carter G.F., ”Modeling lake sediment geochemical distribution
بررسی کرده، نتایج به دست امده حاکی از این است که مولفه‌های Sr, Cs, Li, و نیز Cu, Zn, Co, V در مورد عناصر Cu, Zn, Co, V و Ba, Nb, Pb, Th آلیکس، یاراد. الیکس، 1364. تحلیل داده‌های اکتشافی، دانشگاه تهران نیکل-کروم در این مولفه وزن منفی دارند. بررسی‌ها حاکی از این است که مناطق منفی مولفه اصلی با نقدش گانی سازی منطقه مهیج‌ستیگی دارند.

مولفه‌ای مشابه در برای عناصر منفی و برای عناصر دیگر وزن منفی دارند. مولفه‌ی 2 منفی و برای عناصر Cu, Zn, F, Pb, Rb, Ni مورد نظر نشان می‌دهد. آنار نیکل-کروم در رابطه با واحدهای الکتروماغنیتی و مافیک کوه ویک در جنوب منطقه است. علیرغم شواهد کانی‌سازی مس، مشاهده می‌شود که عناصر در این مولفه وزن منفی دارند.

هرمانی ریوی را سرب و فلوئور در این مولفه‌ی تواند گویای نوع دیگری از پایتزی کاتاپی در منطقه‌ی مبتنی. در مولفه‌ی اول نواحی با ناهنجاری مثبت، عناصر روند شمال‌غربی - جنوب‌شرقی دارند و با روند فلزات موجود در منطقه مثبت دارند. بررسی‌ها نشان می‌دهد که این مناطق (با وزن مثبت) با نقضش دگرگونی منطقه مهیج‌ستیگی بالایی دارند. در مولفه‌ی سوم وزن منفی دارند. در مولفه‌های دوم و سرب هرمایی ریوی با نیکل و کروم مشاهده می‌شود. در حاليکه ناهنجاری مس در مولفه‌ی اول همزمان با نیکل و کروم (با وزن منفی) است. عللگی زیر ناهنجاری ریوی گاهی هرمایی با مس و گاهی هرمایی سرب و فلوئور و یا نیکل - کروم است. محدودکننده ناهنجاری مس در مولفه‌ی چهارم As, Ni, Cr, Zn عناصر با وزن منفی در مولفه‌ی چهارم Cs, Rb, Th, Li مشخص می‌شود و عناصر با وزن منفی در مولفه‌ی چهارم Cs, Rb, Th, Li مشخص می‌شود. عناصر با وزن منفی در مولفه‌ی چهارم Cs, Rb, Th, Li مشخص می‌شود.

مکانیزم را به اختصاص داده‌اند. در مولفه‌ی پنجم هرمایی سرب - ریوی - فلوئور - آنیسکت دیده می‌شود.

تحلیل مولفه‌های اصلی لایه‌های هلاکت‌اید نشان داد که حداکثر در مورد عناصر مس و ریوی دو نوع همبستگی عناصر کانسی مطرح‌شده به‌خیصی از ناهنجاری مس هرمایی با نیکل و کروم (در مولفه‌ی اول) و به‌خیصی هرمایی با ریوی (در مولفه‌ی اول). همبستگی عناصر ریوی که هرمایی با مس (مولفه‌ی اول) و گاهی هرمایی سرب و فلوئور (مولفه‌ی پنجم) و یا نیکل - کروم (در مولفه‌ی دوم) است.

ناهجاری‌های مس و عناصر دیگر با نواحی زمین‌شناسی و دگرگونی منطقه تطبیق داده شدند. نواحی ناهنجاری مس...
using principal component, indicator kriging and multifractal power-spectrum analysis: A case study from Gowganda, Ontario”, Geochemistry: Exploration, Environment, Analysis, 4 (2004), 59–

