کانی شناسی، سنگ‌نگاری و زئوپتیمی سنگ‌های آنتشفاشانی خروافق (شمال غرب ایران)

هادی پیروج، امین اله کمالی، بهداد عبادي حاجی عیلیو، علی عادمی

گروه زمین شناسی، دانشکده علوم طبیعی، دانشگاه تبریز

چکیده: منطقه‌های مورد بررسی در این مطالعه، از نظر فیزیکی، زئوپتیمی، سنگ‌نگاری و شناسایی بسیار زیادی از سنگ‌های آنتشفاشالستی از جمله آنتشفاشانی خروافق و کیسه‌پاره‌پیکانی از جنوب و شرق ایران می‌باشند. سنگ‌های آنتشفاشالستی از جمله خروافق و کیسه‌پاره‌پیکانی از جنوب و شرق ایران می‌باشند. سنگ‌های آنتشفاشالستی از جمله خروافق و کیسه‌پاره‌پیکانی از جنوب و شرق ایران می‌باشند. سنگ‌های آنتشفاشالستی از جمله خروافق و کیسه‌پاره‌پیکانی از جنوب و شرق ایران می‌باشند.

مقدمه

معمول از حوضه‌های شنی‌پیکانی، از جمله آنتشفاشالستی از جنوب و شرق ایران می‌باشد. سنگ‌های آنتشفاشالستی از جمله خروافق و کیسه‌پاره‌پیکانی از جنوب و شرق ایران می‌باشد. سنگ‌های آنتشفاشالستی از جمله خروافق و کیسه‌پاره‌پیکانی از جنوب و شرق ایران می‌باشد. سنگ‌های آنتشفاشالستی از جمله خروافق و کیسه‌پاره‌پیکانی از جنوب و شرق ایران می‌باشد.
پیامد فاز کوژتوپی پیامدهایی از میونس و استقرار در بالای آنها و نیز وجود پروتوپتی از رسوبهای در درون توده، جوانتر از این واحدهای رسوبی است. این توده‌های انتفاسی به عنوان مقاومت در برابر عوامل فرسایشی اغلب به صورت سیستم‌های بلند و خشن در منطقه رخخور دارد.

روش بررسی

بررسی‌های آزمایشگاهی بر اساس تهیه 54 مقطع میکروسکوپی برای بررسی‌های سنگ‌نگاری انجام شد. از این سنگ‌ها که کمترین میزان دگرگونی را داشتند انتخاب و ICP-MS در آزمایشگاه Alas-Chemex شدند. اکسیدهای اصلی به روش 06 و عناصر فرعی و کمیاب به روش ME-MS81 تجزیه شدند. نتایج تجزیه‌های انجام شده برای اکسیدهای اصلی به صورت درصد ونیز (Wt%) و برای عناصر کمیاب با مقدار بخش در (میلیون ppm) در جدول (1) ارائه شده‌اند. این روش تجزیه به عنلت آشکارسازی بسیار پایین و درستی و دقت بالا به طور

شکل 1 موقت‌های منطقه ۴ در سطح کرونیک بوده و به گونه‌ای روی از رسوبهای میونس و استقرار در بالای آنها و نیز وجود پروتوپتی از رسوبهای در درون توده، جوانتر از این واحدهای رسوبی است. این توده‌های انتفاسی به عنوان مقاومت در برابر عوامل فرسایشی اغلب به صورت سیستم‌های بلند و خشن در منطقه رخخور دارد.
| نویسندگان: سیف نمازی و زلیفتی | تولید کننده: حسین نمازی | تاریخ: ۱۳۹۱ | شماره: ۸

جدول ۱: نتایج تجزیه شیمیایی سنگ‌های آنتفیشی خرواق به روش ICP-MS

<table>
<thead>
<tr>
<th>نماد</th>
<th>Fe</th>
<th>SiO₂</th>
<th>P₂O₅</th>
<th>Al₂O₃</th>
<th>MgO</th>
<th>CaO</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>100</td>
<td>70</td>
<td>10</td>
<td>70</td>
<td>60</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Mn</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Ni</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Cu</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Zn</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>نماد</th>
<th>Fe</th>
<th>SiO₂</th>
<th>P₂O₅</th>
<th>Al₂O₃</th>
<th>MgO</th>
<th>CaO</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr</td>
<td>100</td>
<td>70</td>
<td>10</td>
<td>70</td>
<td>60</td>
<td>30</td>
<td>50</td>
</tr>
<tr>
<td>Mn</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>Ni</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Cu</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Zn</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
سنگنکاری
تراکی بژالیت‌ها و تراکی آندزیت‌ها، سنگ‌های مهم منطقه‌اند.
کانی‌های اصلی موجود در آنها به ترتیب قراونی شامل
پلیزیکلاژ، بیروکسن، بیروکاز، کاکته‌هایی کدر اولیه و
کانی‌های فرعی شامل بیروکت و از کانی‌هایی که به ناحیه می‌توان به
کلبیت اشاره کرد. پلیزیکلاژ‌ها به صورت فتوکراتی و
میکروپاتی به ناحیه ریز به حالت گرد شده، نیمه شکل دار، دارای
ماوک پی سینتیک، منطقه‌بندی و بالغینه سنگنکاری.
پژوهشگران مختلف تحقیق بافت غیرنکاری را در پلیزیکلاژ‌ها
اورزیت به صورت فتوکراتی، کلومیتی و منطقه‌بندی
می‌شود این حالت به شروع تبلور یخی و جدایی کانی
نسبت داده شده است. اورزیت معمولاً به کلبیت دگرسانی شده و
دارای حاشیه واکنشی است (شکل 2 و 3 ت). ترکیب
بصوتن فتوکراتی این‌گونه شده به دیده می‌شود (شکل 2 ت).
کانی‌های هورنیت‌های غالبی فتوکراتی شکل دار و منظم و
کلبیت با حاشیهی سوخته‌اند (شکل 2 ج). بیروکت مهم‌ترین

شکل 2الف) پلیزیکلاژ منطقه‌بندی (ب) پلیزیکلاژ دارای بافت غریایی، (ب) اورزیت با فاصله‌ای ت اورزیت منطقه‌بندی شده، (ث) بیروکت ایدینگسیته شده، (ژ) هورنیت ایستایه شده، (چ) پروره کلومیتی شامل پلیزیکلاژ، بیروکت، هورنیت‌های کلبیت و ایدینگسیته در سنگ‌های درگون.
سنگ‌های انفیشاسیونی میوسن شمال خروقات بر اساس تغییرات مجموع قلیایی‌ها نسبت به افزایش سیلیس [V] در گستره قلیایی قرار می‌گیرند (شکل ۴). همچنین ابن نمونه‌ها در نمودار [V] دارای ماهیت پیاسیم قلیایی بالا هستند (شکل ۵).

شکل ۳ رده‌بندی سنگ‌های مورد بررسی با استفاده از نمودار Zr/TiO۲-Nb/Y.

[۶] TASI تعیین سری ماگمایی سنگ‌های منطقه با استفاده از نمودار.

شکل ۴ تغییرات سری ماگمایی سنگ‌های منطقه با استفاده از نمودار [۷].

شکل ۵ نمودار تغییر شاخص پتانسیم سنگ‌های آدرین [۸].
کردن که شیب گلو عناصر کمیاب خاکی می‌تواند نشان‌دهنده مزان ذوب بخشی باشد، به این صورت که در درجه‌های سیالات ذوب بخشی، شیب نمودارهای (REE) غنی شدگی سیال (HREE) نسبت به غنی شدگی عناصر کمیاب خاکی سیک (LREE) نسبت به غنی شدگی نشان می‌دهد. این غنی شدگی می‌تواند از تاثیر شارهایی با گدازه‌های حاصل از ورقه فورونده‌ها تحت استفاده از نسبتهای [Lan/Smn], [Lan/Ybn] و LREE (Ceu/Ybn) می‌توان درجه جدایی به رتبیت REE و Ra تعیین کرد. نسبتهای بالا به ترتیب برای REE و سنگ‌های مورد بررسی بین ۲۰۰۵-۲۰۰۸ و ۱۰ درصد می‌باشد. درجات کم ذوب بخشی (کمتر از ۱۰ درصد) می‌تواند منجر به تشکیل ماده‌ای پازالت قلبی شده که یک غنی شدگی در توالی عناصر کمیاب خاکی سیک نشان می‌دهد [۱۱]. یعنی با افزایش قلبیانیت-br (LREE) و شیب منحنی کاهش می‌یابد، این امر در نتیجه‌ای حساسیت زر بیشتر نسبت به Sm و تنها منحنی کاهش پذیر [۱۲] و تنها منحنی X-ها در درجه‌های مختلف ذوب است. با افزایش درجه‌های ذوب به طور مطلق کمتر است. نسبت REE به سرعت کاهش دارد. این نشانه داده که تئور شیب و پس از آن (درجه‌های ذوب بخشی از ۲۰ درصد) در کنار کمیاب خاکی ایجاد می‌کند. با توجه به این بررسی‌ها می‌توان استنتاج در رده‌های متن‌های تغییرات مهمی در تئور REE نمودار عکوی‌تر نرم‌ال‌زده شده برای [۱۳] شکل ۶ نمودار عکوی‌تر نرم‌ال‌زده شده بیان (REE)
تکیه شیمیایی سنگ‌های آتش‌نشانی خروق نسبت به
گوشته‌ای اولیه [15] به‌همراه شده است (شکل 7). در این نمودار
Na(Nb, P, Ti) مشاهده می‌شود و نتیجه‌ی این که در تمامی
نمونه‌های به‌همراه یک میانگین Pb شاخه‌ای مشاهده می‌شود. با این حال،
از قاره‌ای بوده و ممکن است نشان‌دهنده نقش بوسته در
فرایند‌های ماکمای پاشیده [16]. به عقیده‌های بیزگری سه‌بعدی می‌باشد،
و نسبت به شکل 7 نمودار پهن‌شده نسبت به گوشته‌ای اولیه [15].

شکل 7 نمودار پهن‌شده نسبت به گوشته‌ای اولیه [15].

شکل 8 نمودار Rb نسبت به Rb [18].

هامای 2 > 1.5 و La/Ta > 1.5 هستند [17]. مقدار این
نسبت‌ها در سنگ‌های برسی شده به ترتیب 28-41 و 1/5-1/1 است که تاثیر آلودگی بوسته‌ای را نشان می‌دهد. درای
نشان داد که آلودگی بوسته‌ای در سنگ‌های منطقه از
نسبت به Rb نمودار Rb در نمودار در این نمودار روند آبیش با بوسته‌ای بلایی را
نسبت به (شکل 8). سرب در کاتی‌های پتاسیم‌دار به
صدرا به عصر پذیرفته شده وجود دارد و بالاترین با پیشرفت
جدایی، نسبت پتاسیم به سرب زیاد می‌شود [19]. میانگین
نسبت در بوسته 14 ppm و در پلاکت 25 ppm و در نمونه
هامای آذربایجان شرقی 11-25 است که می‌تواند بعنوان متغیر و
نااسطحی بودن تحت تأثیر آلودگی های بوسته‌ای قرار گیرد.
کردن محیط حاشیه‌ای فعال کرانه‌ای از محیط‌های دیگر، می‌توان از نمونه Ta/Yb نسبت به в Ta/Yb استفاده کرد (شکل 10). در نمونه MORB [20] ناهنجاری مشیت Th/Nb و نیز ناهنجاری منفی Ta و Nb دیده می‌شود (شکل 9). عنصری مانند Ta و Th نمی‌تواند برای شناسایی فرآیندهای که گوسخه را تحت تاثیر قرار داده، بکار رود. در مناطق وابسته به فرآیندهای متخرک کننده و در گویه‌گوشتی‌های [در بالای رون فرآیندهای گوشتی] ناشی از نشان می‌دهد [20] علاوه بر تاثیر آلیاژ پوسته‌ای در سنگ‌های منطقه که در بالا می‌توان به حلالیت سنگ‌های طبیعی کم آنها در کنده‌ناشی از الیوتسر اقیانوسی فرورونده نسبت داد که باعث تغییر آنها در پروازهای اقیانوسی باشد.

در کنده‌ناشی اقیانوسی فرورونده می‌شود و در فنرد [16]. آمپیبول، آپیسن، زیرکن، اسلست، یکی از بخش‌هایی که در منطقه ناحیه اغلب می‌باشد. در منطقه، می‌تواند میزان محلی‌هایی که آن‌ها در سنگ‌های منطقه، به فرآیندهای متخرک کننده و در گویه‌گوشتی‌های را باعث کننده نشان می‌دهد [20] علاوه بر تاثیر آلیاژ پوسته‌ای در سنگ‌های منطقه که در بالا می‌توان به حلالیت سنگ‌های طبیعی کم آنها در کنده‌ناشی از الیوتسر اقیانوسی فرورونده نسبت داد که باعث تغییر آنها در پروازهای اقیانوسی باشد.

در کنده‌ناشی اقیانوسی فرورونده می‌شود و در فنرد [16]. آمپیبول، آپیسن، زیرکن، اسلست، یکی از بخش‌هایی که در منطقه ناحیه اغلب می‌باشد. در منطقه، می‌تواند میزان محلی‌هایی که آن‌ها در سنگ‌های منطقه، به فرآیندهای متخرک کننده و در گویه‌گوشتی‌های را باعث کننده نشان می‌دهد [20] علاوه بر تاثیر آلیاژ پوسته‌ای در سنگ‌های منطقه که در بالا می‌توان به حلالیت سنگ‌های طبیعی کم آنها در کنده‌ناشی از الیوتسر اقیانوسی فرورونده نسبت داد که باعث تغییر آنها در پروازهای اقیانوسی باشد.
جدول ۲ مقایسه عناصر کمیاب بازالت‌های حوضه پشت کمان بازالت‌های منطقه‌ای خرواق

<table>
<thead>
<tr>
<th>عنصر</th>
<th>East Scotia Sea</th>
<th>بازالت‌های حوضه پشت کمان</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ba/Nb</td>
<td>< ۳۰</td>
<td>۴۳ - ۴۸</td>
</tr>
<tr>
<td>Ce/Pb</td>
<td>> ۲</td>
<td>۶۳ - ۸۰</td>
</tr>
<tr>
<td>Rb/Sr</td>
<td>۲۵ - ۸۰</td>
<td>۶۴ - ۹۷</td>
</tr>
<tr>
<td>Zr/Rb</td>
<td>۵۳ - ۶۰</td>
<td>۴۹ - ۸۷</td>
</tr>
</tbody>
</table>

نحوه نمودار

شکل ۱۰ نمودار Th/Hf نسبت به Ta/Yb سنجش در گستره حاشیه فعال فارما فرآیند [۳۲]. ب- نمودار Ta/Hf برای جداکردن حاشیه فعال فارما از سنجشان انششایی درون فارما [۴۲].

شکل ۱۱ نمودار Ba/Nb نسبت به Ce/Pb در مقایسه سنجش‌های منطقه‌ای خرواق با نواحی دیگر پشت کمان تراشده [۳۵].

اسپیت- لرزولیتی و گرانت- لرزولیتی را ناشان می‌دهد. در اثر ذوب یکسان با کوانتاگا گوشش‌های اسبیتل- لرزولیتی، نسبت غیرنرمال زیرا Sm/Yb در دارای ضریب توزیع مشابهی در اسبیتل است که در مقابل گرانت دارای Sm/Yb در مقایسه با Sm/Yb در دارای ضریب توزیع بسیار بالایی برای Yb می‌باشد. لذا ذوب در جرقه یا تنا نیتروس خاستگاه گرانت- لرزولیتی منجر به تولید گاز‌های با نسبت بالاتر در مقایسه با Sm/Yb از نسبت‌های عناصر کمیاب و کمیاب خاکی می‌توان برای شناسایی منابع مختلف گوشش‌های و نیز تعبیه ذوبی از نروزانه استفاده کرد. برای تعبیه دو گوشش گرانت با ترکیب کلی شناسایی محل خاستگاه ماکم‌های قلبی، از نمودار نسبت به Sm/Yb استفاده شد (شکل ۱۲ و ۱۳). این نمودارها، تغییرات در ذوب در دو محل خاستگاه گوشش‌های
با توجه به شواهد زمین شناسی و روش‌هایی منطقه، محیط زمینی ساختی بسیار زیر کف حیاتی کشفی در زمان موسون است. در مرحله بعد از برخورد پلیت اورستیان با پلیت ایران مرکزی خروج گذاره ممکن است تا با همانگر WAM گوشته تابعی از آناتولی غربی است. خصوصیات نشان دهنده آرایش گوشته است که با استفاده از روندهای ترکیبی گزاره DMM گوشته قدرتی نسبت به PM (گوشته اولیه) معین شده است. سنتیلهای مورد بررسی به منظور محاسبه‌ی نسبت به به منظور محاسبه‌ی مناسب‌ی Sm/Yb نسبت به La/Yb در نمودار [۴۸].

![Diagram](image-url)
برداشت
سته‌های آنتشفسیانی منطقه شمال خروشک که در شهرستان‌های قازقان، سرخس، دامغان و اردبیل قرار دارند شامل تراکی‌های تراکی، تراکی‌های ترکی و تراکی‌های آندزیت‌زدایند. کامیون‌های اصلیی که در این سنگ‌های مقشورسازی شده‌اند شامل می‌باشند: مس، دیویدور، مولیبden، نیترات، سرب، کروم و غیره. نتایجشان در نظر گرفته شده است که سنگ‌های آنتشفسی در سرتاسر زمین رخندوز یافته‌اند.

مدت‌های دامنه‌ای باشته‌اند و بعد از برخورد، کشنده ایجاد می‌شود که بر اثر این کشنده‌ها منابع شدید بر اساس عناصر Sm و Gd، ماکا مارد سنگ‌های مورد بررسی احتکاراً از یک حاکی از مداومت درون‌گه شیانه در اعماق به هنگام فورانی نیز با هر کمک به یک سایر. به نوبه این سنگ‌های آنتشف‌سی و دیگر سنگ‌های از منطقه یاده شده و به همین علت شبیه به آنتشفسی‌های منطقه ریتی است. و حالسنگ‌های پایدار قبایلی سدی است. برای به کشیده سنگ‌های آنتان آن می‌باشد و دیگر سنگ‌های دیگر به در نظر گرفته شده است. و دیگر سنگ‌های داخل درون‌گه‌ها زمین شده‌اند و این سنگ‌های آنتشفسی‌های قدیمی به صورت فوران‌های آنتشفسی در سرتاسر زمین رخندوز یافته‌اند.

[29] عبادي، حاج علی‌بی، بررسی پتروлогی و زیست‌شناسی سنگ‌های دستگرد شمال غرب ایران، پایان‌نامه کارشناسی ارشد، دانشگاه تبریز، 97 صفحه.