شیمی برخی از کانی‌های موجود در باولتیت گرانیتوئیدی شیرکوه، جنوب غرب یزد

مريم شیبی، داريوش اسماعیلی

- دانشکده علوم زمین، دانشگاه صنعتی شهید رجایی
- دانشکده زمین‌شناسی، برای دانشگاه تهران

(دریافت مقاله: 16/17/15/14) نسخه نهایی: 24/3/14

چکیده: باولتیت گرانیتوئیدی نوع S شیرکوه که به‌خوبی از زون ساختاری ایران مرکزی را در جنوب‌غربی شیرکوه نمایش می‌دهد، از هم‌اکنون گزارش‌هایی در این زمینه حداقل خشیان که در باولتیتیت شیرکوه به‌کار برده شده‌است. همچنین در این بررسی در سطح مقطعی و شیمیایی پاتریتیتی باعث این است که در این صورت حداقل در تولیدات پاتریتیتی نوع S شیرکوه می‌تواند به‌کار برده شود.

واژه‌های کلیدی: باولتیت، پاتریتیت، گرانیتوئیدی شیرکوه، مکملات

مقدمه

بعزت و همه‌گیری انرژی نهایی کهکشانی، یکی از مهم‌ترین عوامل موثر در شکل‌گیری و پیشرفت علم سیستم‌های مکانیکی است. این آتشفشانی محصول‌های در سطح مقطعی و شیمیایی پاتریتیتی باعث این است که در این صورت حداقل در تولیدات پاتریتیتی نوع S شیرکوه می‌تواند به‌کار برده شود.

شیمی برخی از کانی‌های موجود در باولتیت گرانیتوئیدی شیرکوه، جنوب غرب یزد

Sheibi@Shahroodut.ac.ir

*نویسنده مسئول، تلفن-خانه: 72360274 (326)، پست الکترونیکی: Sheibi@Shahroodut.ac.ir
زمین شناسی عمومی
باتولیت گرافنی‌تیدی شیرکه در فاصله 40 کیلومتر جنوب غربی بندر اردبیل در محدوده جغرافیایی ۳۲°۱۵،۱۰۴ دقیقه جغرافیایی و ۵۱°۳۵،۱۸۵ دقیقه طول شرقی قرار دارد. بر اساس تقسیماتی واحدهای ساختاری، پلاکوسپت رسمی استریکت گردن، مورد بررسی در محدوده ایران مرکزی می‌باشد. به این ترتیب گرافنی‌تیدی شیرکه ساختار نایابی شده و گرده‌برداری و چسباندن شدید مورد بررسی قرار گرفته است.

باتولیت را می‌توان به رودهایهای همزمان با سیرپین سپن‌نامه زیرکه گردنی شیرکه انجام داد. میزان دیسپلایژن بسیار بالاست. با استفاده از تکنیک‌های مختلف، می‌توان با توجه به منابع اصلی و کمک‌های استفاده در محاسبه ICP-AES و آزمون‌های زئوپتروگرافیکی عمق در این محدوده ارزیابی می‌نمایی می‌نمایی و دانشگاه بول ساباتیه شهر تولوز فرانسه انجام کرده است.

گرده
پلاژیوکالز
نتایج حاصل از آنالیز پلاژیوکالزها در جدول 1 افزایش شدند.
در واحد گردوپوریتی، بلورهای پلاژیوکالزی وجود دارد که
دارای هسته‌های آهنگی نسبتاً یکنواختی بوده و حاشیه به
قطعه‌بندی عادی ختم می‌شوند (جدول 1، ۱۱)
(S.K1) در مرکز (An3۰) پلاژیوکالزی بایق مانده از ذوب بخشی شیب‌دار داشت و به-
دیل ترکیب یکنواختن در مرکز بلور به عوارض خاکی
رستی در نظر گرفته می‌شود [۶] در واحد مونزورگانیتی
پلاژیوکالزی منطقه‌بندی عادی داشت و به- An۲۰
در مرکز تغییر می‌کند. محتوای آلیت در لوکوگرانیت‌ها
An۳۰ بسیار بالاست و به‌شکل ۸۸ درصد ویژه می‌رسد. نتایج هر
چه از واحد گردوپوریتی به سمت لوکوگرانیت‌ها نزدیکت‌
می‌شوند محتوای آلیت افزایش می‌یابد.

پیتیت
به طور کلی، پیتیت‌های کانی‌هایی تشکیل دهنده پیتیت
گرانیت شیب‌کوه است. این کانی در لوکوگرانیت‌ها، بصورت
پلاژیوکالزی چاه‌انه و یا به‌صورت موسکویت
مشاهده می‌شود. پیتیت در مونزورگانیت‌ها به دو صورت
پلاژیوکالزی ورقایی و یا انبساطی کومک‌که اصلی‌ترین

کانی‌های رستیتی را در پی دهد مشاهده یافته است. در مواردی دی‌ورنای
سیلیمانیت درون این انبساط‌های پیتیتی بالی مانده‌اند. جای
و هم‌کان [۵] رستیت‌های اولیه را با صورت بلورهای باقی
مانده از خاسگاه تعیین کردند. همی این پیتیتی‌ها دارای
بلا هسته‌های (۳۰۰۰۰، ۳۰۰۰۰)، که سرتحی
گرانیت‌های پرآلومین است [۷] در پیتیت‌های ورقای
Xm = ۲۳.۷% (دما ۶۰۰ C) و در انبساط کمتر از
۲۳.۷% می‌توان است (جدول ۱) همی این پیتیت‌ها تقریباً دارای نسب
۵.۵ هستند و این مقدار در انبساط رستیتی به
می‌رسد. پیتیت‌های مورد بررسی در نموهای چهارتابای آنتی-
سیدروفلیتی- فلوربایتی - استینت (دندی تروگر
[۸]) دارای Xm = ۲۳.۷% Fe2O3 + MgO %
در نمونه که می‌شود (شکل ۳ فیک). پیتیت‌های رستیتی به دلیل
این پیتیت‌ها با چرب‌کردن در نمونه
عبارت می‌شود [۹] همی این پیتیت‌ها به‌جایگاه گرانیت‌های
برآلومین و استیدیه و انبساط رستیتی در کدرو آهنگی- قلایی-
واقع شده‌اند که می‌تواند به دلیل تغییرات احتمالی در دمای
تبلور باشد (شکل ۲).
جدول ۱ نتایج آنالیز ریزپدارشی (Wt%) کانی‌های پلاژیوکلاز، بیوئیت، کوارتز، موسمیت، مونزیت و ایلامینت از رخ‌سازه‌های مختلف بافت‌شناسی گرانیتوئید پلی‌کروش

<table>
<thead>
<tr>
<th>کانی</th>
<th>سری</th>
<th>حاشیه</th>
<th>مرکز</th>
<th>جدایی</th>
<th>نسبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۵۲۸</td>
<td>۳۲۸</td>
<td>۴۸۸</td>
<td>۱۲۴</td>
<td>۱۲۴</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
</tr>
<tr>
<td>CaO</td>
<td>۳۸۸</td>
<td>۳۸۸</td>
<td>۳۸۸</td>
<td>۳۸۸</td>
<td>۳۸۸</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۵۴۸</td>
<td>۵۴۸</td>
<td>۵۴۸</td>
<td>۵۴۸</td>
<td>۵۴۸</td>
</tr>
<tr>
<td>K₂O</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
</tr>
<tr>
<td>Total</td>
<td>۲۹۸</td>
<td>۲۹۸</td>
<td>۲۹۸</td>
<td>۲۹۸</td>
<td>۲۹۸</td>
</tr>
<tr>
<td>An%</td>
<td>۳۳۸</td>
<td>۳۳۸</td>
<td>۳۳۸</td>
<td>۳۳۸</td>
<td>۳۳۸</td>
</tr>
</tbody>
</table>

جدول ۱-ب

<table>
<thead>
<tr>
<th>کانی</th>
<th>سری</th>
<th>حاشیه</th>
<th>مرکز</th>
<th>جدایی</th>
<th>نسبت</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>۵۲۸</td>
<td>۳۲۸</td>
<td>۴۸۸</td>
<td>۱۲۴</td>
<td>۱۲۴</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
</tr>
<tr>
<td>CaO</td>
<td>۳۸۸</td>
<td>۳۸۸</td>
<td>۳۸۸</td>
<td>۳۸۸</td>
<td>۳۸۸</td>
</tr>
<tr>
<td>Na₂O</td>
<td>۵۴۸</td>
<td>۵۴۸</td>
<td>۵۴۸</td>
<td>۵۴۸</td>
<td>۵۴۸</td>
</tr>
<tr>
<td>K₂O</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
<td>۴۳۸</td>
</tr>
<tr>
<td>Total</td>
<td>۲۹۸</td>
<td>۲۹۸</td>
<td>۲۹۸</td>
<td>۲۹۸</td>
<td>۲۹۸</td>
</tr>
<tr>
<td>An%</td>
<td>۳۳۸</td>
<td>۳۳۸</td>
<td>۳۳۸</td>
<td>۳۳۸</td>
<td>۳۳۸</td>
</tr>
</tbody>
</table>

شکل ۲: رده‌بندی میکاها با استفاده از ترکیب شیمیایی آنها [۸] به نمودار مثلث اکسیدهای FeO* MgO Al₂O₃ می‌باشد. تاکنون اکسیدهای FeO* MgO Al₂O₃ موجود در ساختار بیوئیت، کوارتز، موسمیت و ایلامینت از رخ‌سازه‌های مختلف بافت‌شناسی گرانیتوئید پلی‌کروش است. P: بیوئیت در جایگاه‌های پر-موسمی (شامل کانی‌های نوع C) و کوارتز در جایگاه‌های اهکی - کلیبمان کوارتز.
گارنت

گارنت معمولاً به صورت شش گوش و در موادی که نیز به صورت بلورهای شکل‌دار تا نیمه شکل‌دار هما یا یکنواخت حاوی هیمجون بیوتیت و گرلیت (از بیوتیت) مشاهده شده است. یکی از گارنت‌های موجود در یک چند منطقه‌گرایی برای بررسی منطقه‌گرایی و تغییرات ترکیبی آنتی‌کلاس این کانی‌ها در مرز و مورد آلپاژژ راذروی قرار گرفت. به طور کلی، محتوای آلماندین از ۲/۴۵ تا ۷۵/۸٪ و مقدار CaO نیز که سازه‌های اصلی‌گرمسار و اندزائیدت در ساختار فرمولی است از ۱/۲ تا ۱/۳ در تغییر بوده و غالباً زیر مرکز به حاشیه کاهش می‌یابد (جدول ۱). در حالت که محتوای اسپرسانتن در مرکز بلور ۰/۴٪ یا بیشتر باعث می‌شود که در حاشیه‌ها به ۱/۱٪ افزایش می‌یابد.

جدول ۱- ج

<table>
<thead>
<tr>
<th>کانی‌ها</th>
<th>فرمول به دست آمده</th>
<th>X(SiO)</th>
<th>X(Al₂O₃)</th>
<th>X(TiO₂)</th>
<th>X(MgO)</th>
<th>X(CaO)</th>
<th>X(MnO)</th>
<th>X(FeO)</th>
<th>X(Cr₂O₃)</th>
<th>X(Fe₂O₃)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃(c)</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td></td>
</tr>
<tr>
<td>Sum Ox%</td>
<td></td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
<td>۱۰۰</td>
</tr>
<tr>
<td>Pyrope</td>
<td></td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
</tr>
<tr>
<td>Almandin</td>
<td></td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
</tr>
<tr>
<td>Spessartine</td>
<td></td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
</tr>
<tr>
<td>XMg</td>
<td></td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
<td>۷۵</td>
</tr>
</tbody>
</table>

شکل ۲- ال.دی. و گارنت موجود در یک چند منطقه‌گرایی. درصد مولی اسپرسانتی و بیوروب (X₁p, X₁sb) برای بررسی تغییرات عناصر اصلی ترسیم شده است. ب) ترکیب گارنت (Mn, Fe, Mg) از گرانت شیرکوه. قلمرو خاکستری ترکیب گارنت از میلر و استادار (۱۱۱) را نشان می‌دهد.

شکل ۳- ال.دی. و گارنت موجود در یک چند منطقه‌گرایی. درصد مولی اسپرسانتی و بیوروب (X₁p, X₁sb) برای بررسی تغییرات عناصر اصلی ترسیم شده است. ب) ترکیب گارنت (Mn, Fe, Mg) از گرانت شیرکوه. قلمرو خاکستری ترکیب گارنت از میلر و استادار (۱۱۱) را نشان می‌دهد.

شکل ۴- ال.دی. و گارنت موجود در یک چند منطقه‌گرایی. درصد مولی اسپرسانتی و بیوروب (X₁p, X₁sb) برای بررسی تغییرات عناصر اصلی ترسیم شده است. ب) ترکیب گارنت (Mn, Fe, Mg) از گرانت شیرکوه. قلمرو خاکستری ترکیب گارنت از میلر و استادار (۱۱۱) را نشان می‌دهد.
ماگنیتیک پرولوئین، از دیدگاه جامد دیگر همانند بیونیت شکل شده بود. گرانم غنی از آلمندن با تیتر در محدوده شده و در شکل 1 نشان می‌دادند. می‌توان گفت که این کانی تیتر نهایی تیبر که با فارونش عناوین شکل شده است. هر چند که حضور الکلولین اضافی نیز Mn
برای تیبر آن الزامی بوده است. [13].

موسکویت

بر اساس شواهد سنگنامه میلر و همکاران [14]، بر اساس [15] و اسپیر [16] می‌توانیم میزان تیبر شیمیایی موسکویت-

های اولیه و نتانویه به قاره زبرنده (1) موسکویت‌های اولیه در مقایسه با فارویه دیگر، در شیپ بلو بوده و می‌تواند همانند بیونیت با عنوان اصلی موسکویت (2) انتهاه برداشته شده و می‌تواند به صورت شکل‌دار با نیمه شکل‌دار باشد؛ 3) درون کانی‌های دیگر قرار می‌گرفت باشد، 4) به شکل وقتی با کانی‌های دیگر اطراف نشان نداهند و 5) در سنگ‌های سالم و قف و هرگونه دگرگزایی شیمیایی نشان دهند. مشارکت سنگی-

نگاری جهانه در نوع موسکویت یا نتانویه یا در گرایش-

های شیپ که انتهاه می‌دانند. جدول 1 اختراف تیبری درون

یک نمونه از یک گرانیت یا مولصاری، این نشان می‌دهد [11].

سالموسکویت‌های اولیه نسبت به نتانویه از Al و Na غنی‌تر و از TiO2 به نتیجه می‌دهد [14] نشان می‌دهد Si و Mg

بدین معنی که این ماغنیت‌های به‌ویژه الکلولین روي TiO2 و Fe2O3 مذاب و به‌ویژه FeO آن TiO2 به نتیجه می‌دهد [17].

جدول 1-7

<table>
<thead>
<tr>
<th>مواد</th>
<th>تاناه/ 8</th>
<th>58</th>
<th>54.65</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>7.53</td>
<td>7.54</td>
<td>7.528</td>
</tr>
<tr>
<td>Al2O3</td>
<td>1.75</td>
<td>1.78</td>
<td>1.728</td>
</tr>
<tr>
<td>FeO</td>
<td>1.25</td>
<td>1.24</td>
<td>1.248</td>
</tr>
<tr>
<td>MgO</td>
<td>1.59</td>
<td>1.56</td>
<td>1.568</td>
</tr>
<tr>
<td>CaO</td>
<td>1.25</td>
<td>1.24</td>
<td>1.248</td>
</tr>
<tr>
<td>Na2O</td>
<td>1.59</td>
<td>1.62</td>
<td>1.628</td>
</tr>
<tr>
<td>K2O</td>
<td>1.59</td>
<td>1.56</td>
<td>1.568</td>
</tr>
<tr>
<td>BaO</td>
<td>1.59</td>
<td>1.56</td>
<td>1.568</td>
</tr>
<tr>
<td>NiO</td>
<td>1.59</td>
<td>1.56</td>
<td>1.568</td>
</tr>
<tr>
<td>Fe2O3(c)</td>
<td>1.59</td>
<td>1.56</td>
<td>1.568</td>
</tr>
<tr>
<td>خودی</td>
<td>9.824</td>
<td>9.824</td>
<td>9.824</td>
</tr>
</tbody>
</table>

به نتیجه می‌دهد.
جدول ۱-۱ موارد موجود در دانشگاه گرانتویلید...
ایلمنیت با فرمول ساختاری FeTiO₃ بین ۲۰ تا ۳۰٪ اصلی ترین کانی‌های کدر در این باتولیت را تشکیل می‌دهند. میزان ترکیب Fe₂O₃ در این باتولیت را تا ۰.۹٪ و تشکیل این کانی‌ها هم‌اکنون در سال بوده و تیم‌های تحقیقاتی (مانند جایگزینی بیوتیت با کریت و موسکوت) جدایی‌شده‌اند. میزان اکستریسیون کانی‌های سیلیکاتی هستند. شکل ۶ ترکیب شیمیایی ایلمنیت در این باتولیت را در نمودار سه تایی MnTiO₃، Fe₂O₃ و FeTiO₃ نشان می‌دهد.

![ایلمنیت](Image)

شکل ۶ ترکیب شیمیایی ایلمنیت موجود در گرانیت صوریه در نمودار سه تایی MnTiO₃، Fe₂O₃ و FeTiO₃ (I) و زیکلونیت (G) نیز نشان داده شده‌اند [۲۳].

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>جدول ۱</th>
<th>جدول ۲</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>۰.۹۷</td>
<td>۰.۹۷</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۰.۹۹</td>
<td>۰.۹۹</td>
</tr>
<tr>
<td>MgO</td>
<td>۱.۱۲</td>
<td>۱.۱۲</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۱۵</td>
<td>۰.۱۵</td>
</tr>
<tr>
<td>CaO</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
</tr>
<tr>
<td>ZnO</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>Total</td>
<td>۲.۴۷</td>
<td>۲.۴۷</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>جدول ۲</th>
<th>جدول ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fe₂O₃</td>
<td>۰.۹۷</td>
<td>۰.۹۷</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۰.۹۹</td>
<td>۰.۹۹</td>
</tr>
<tr>
<td>MgO</td>
<td>۱.۱۲</td>
<td>۱.۱۲</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۱۵</td>
<td>۰.۱۵</td>
</tr>
<tr>
<td>CaO</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
</tr>
<tr>
<td>ZnO</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>Total</td>
<td>۲.۴۷</td>
<td>۲.۴۷</td>
</tr>
</tbody>
</table>

جدول ۱

<table>
<thead>
<tr>
<th>شماره آنلاین</th>
<th>جدول ۱</th>
<th>جدول ۲</th>
<th>جدول ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره آنلاین</td>
<td>Fe₂O₃</td>
<td>TiO₂</td>
<td>MgO</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۰.۹۷</td>
<td>۰.۹۹</td>
<td>۱.۱۲</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۰.۹۹</td>
<td>۰.۹۹</td>
<td>۱.۱۲</td>
</tr>
<tr>
<td>MgO</td>
<td>۱.۱۲</td>
<td>۱.۱۲</td>
<td>۱.۱۲</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۱۵</td>
<td>۰.۱۵</td>
<td>۰.۱۵</td>
</tr>
<tr>
<td>CaO</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
</tr>
<tr>
<td>ZnO</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>Total</td>
<td>۲.۴۷</td>
<td>۲.۴۷</td>
<td>۲.۴۷</td>
</tr>
</tbody>
</table>

جدول ۲

<table>
<thead>
<tr>
<th>شماره آنلاین</th>
<th>جدول ۱</th>
<th>جدول ۲</th>
<th>جدول ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره آنلاین</td>
<td>Fe₂O₃</td>
<td>TiO₂</td>
<td>MgO</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۰.۹۷</td>
<td>۰.۹۹</td>
<td>۱.۱۲</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۰.۹۹</td>
<td>۰.۹۹</td>
<td>۱.۱۲</td>
</tr>
<tr>
<td>MgO</td>
<td>۱.۱۲</td>
<td>۱.۱۲</td>
<td>۱.۱۲</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۱۵</td>
<td>۰.۱۵</td>
<td>۰.۱۵</td>
</tr>
<tr>
<td>CaO</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
</tr>
<tr>
<td>ZnO</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>Total</td>
<td>۲.۴۷</td>
<td>۲.۴۷</td>
<td>۲.۴۷</td>
</tr>
</tbody>
</table>

جدول ۳

<table>
<thead>
<tr>
<th>شماره آنلاین</th>
<th>جدول ۱</th>
<th>جدول ۲</th>
<th>جدول ۳</th>
</tr>
</thead>
<tbody>
<tr>
<td>شماره آنلاین</td>
<td>Fe₂O₃</td>
<td>TiO₂</td>
<td>MgO</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>۰.۹۷</td>
<td>۰.۹۹</td>
<td>۱.۱۲</td>
</tr>
<tr>
<td>TiO₂</td>
<td>۰.۹۹</td>
<td>۰.۹۹</td>
<td>۱.۱۲</td>
</tr>
<tr>
<td>MgO</td>
<td>۱.۱۲</td>
<td>۱.۱۲</td>
<td>۱.۱۲</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۱۵</td>
<td>۰.۱۵</td>
<td>۰.۱۵</td>
</tr>
<tr>
<td>CaO</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
<td>۰.۲۸</td>
</tr>
<tr>
<td>ZnO</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>Total</td>
<td>۲.۴۷</td>
<td>۲.۴۷</td>
<td>۲.۴۷</td>
</tr>
</tbody>
</table>
پژوهش برای پیشنهاد تولید مواد شیک گرانیتی از طریق ذوب بازده

هامی با تجزیه و تحلیل با استفاده از فیزیک شیمی، شیمی، پلاستیک و مواد شیک استفاده می‌شود. در سطحی بسیاری از موارد ذوبی می‌توان از آن استفاده کرد.

دماسنجی اشباع شدگی از زیرگر

\[
\text{Ln } D^{*}_{Zr}, \text{ziecon/melt} = 0.85 \times (M-1) + 12.900/T \\
\]

(1)

که در آن

\[
D_{Zr}, \text{ziecon/melt} \text{ نسبت فلزات زر} \\
\]

بر حسب Zr از مزدوج Na، SiO۲ و Mn به Zr اضافه می‌شود (مقداری از M به حساب می‌آید).

\[
\text{T}_{Zr} = 1390 \times 0.85M + \ln (469000/Zr_{\text{melt}}) \\
\]

(2)

دما اشباع زیرگر که با روش افزایش مقدار می‌خورد از دما می‌گردد.

\[
\text{S.K.1} \quad 78,95 \\
\text{S.K.2} \quad 78,27 \\
\text{S.K.3} \quad 78,62 \\
\text{S.K.4} \quad 78,05 \\
\text{S.K.5} \quad 78,47 \\
\text{S.K.6} \quad 80,5 \\
\text{S.K.7} \quad 80,45 \\
\text{S.K.8} \quad 78,5 \\
\text{S.K.9} \quad 80,7 \\
\text{S.K.10} \quad 78,7 \\
\text{S.K.11} \quad 78,27 \\
\text{S.K.12} \quad 78,62 \\
\text{S.K.13} \quad 78,05 \\
\text{S.K.14} \quad 78,47 \\
\text{S.K.15} \quad 78,5 \\
\text{S.K.16} \quad 80,7 \\
\text{S.K.17} \quad 80,45 \\
\text{S.K.18} \quad 80,9 \\
\text{S.K.19} \quad 80,95 \\
\text{S.K.20} \quad 80,99 \\
\text{S.K.21} \quad 81,02 \\
\text{S.K.22} \quad 81,05 \\
\text{S.K.23} \quad 81,07 \\
\text{S.K.24} \quad 81,09 \\
\text{S.K.25} \quad 81,11 \\
\text{S.K.26} \quad 81,13 \\
\text{S.K.27} \quad 81,15 \\
\text{S.K.28} \quad 81,17 \\
\text{S.K.29} \quad 81,19 \\
\text{S.K.30} \quad 81,21 \\
\text{S.K.31} \quad 81,23 \\
\text{S.K.32} \quad 81,25 \\
\text{S.K.33} \quad 81,27 \\
\text{S.K.34} \quad 81,29 \\
\text{S.K.35} \quad 81,31 \\
\text{S.K.36} \quad 81,33 \\
\text{S.K.37} \quad 81,35 \\
\text{S.K.38} \quad 81,37 \\
\text{S.K.39} \quad 81,39 \\
\text{S.K.40} \quad 81,41 \\
\text{S.K.41} \quad 81,43 \\
\text{S.K.42} \quad 81,45 \\
\text{S.K.43} \quad 81,47 \\
\text{S.K.44} \quad 81,49 \\
\text{S.K.45} \quad 81,51 \\
\text{S.K.46} \quad 81,53 \\
\text{S.K.47} \quad 81,55 \\
\text{S.K.48} \quad 81,57 \\
\text{S.K.49} \quad 81,59 \\
\text{S.K.50} \quad 81,61 \\
\text{S.K.51} \quad 81,63 \\
\text{S.K.52} \quad 81,65 \\
\text{S.K.53} \quad 81,67 \\
\text{S.K.54} \quad 81,69 \\
\text{S.K.55} \quad 81,71 \\
\text{S.K.56} \quad 81,73 \\
\text{S.K.57} \quad 81,75 \\
\text{S.K.58} \quad 81,77 \\
\text{S.K.59} \quad 81,79 \\
\text{S.K.60} \quad 81,81 \\
\text{S.K.61} \quad 81,83 \\
\text{S.K.62} \quad 81,85 \\
\text{S.K.63} \quad 81,87 \\
\text{S.K.64} \quad 81,89 \\
\text{S.K.65} \quad 81,91 \\
\text{S.K.66} \quad 81,93 \\
\text{S.K.67} \quad 81,95 \\
\text{S.K.68} \quad 81,97 \\
\text{S.K.69} \quad 81,99 \\
\text{S.K.70} \quad 82,01 \\
\text{S.K.71} \quad 82,03 \\
\text{S.K.72} \quad 82,05 \\
\text{S.K.73} \quad 82,07 \\
\text{S.K.74} \quad 82,09 \\
\text{S.K.75} \quad 82,11 \\
\text{S.K.76} \quad 82,13 \\
\text{S.K.77} \quad 82,15 \\
\text{S.K.78} \quad 82,17 \\
\text{S.K.79} \quad 82,19 \\
\text{S.K.80} \quad 82,21 \\
\text{S.K.81} \quad 82,23 \\
\text{S.K.82} \quad 82,25 \\
\text{S.K.83} \quad 82,27 \\
\text{S.K.84} \quad 82,29 \\
\text{S.K.85} \quad 82,31 \\
\text{S.K.86} \quad 82,33 \\
\text{S.K.87} \quad 82,35 \\
\text{S.K.88} \quad 82,37 \\
\text{S.K.89} \quad 82,39 \\
\text{S.K.90} \quad 82,41 \\
\text{S.K.91} \quad 82,43 \\
\text{S.K.92} \quad 82,45 \\
\text{S.K.93} \quad 82,47 \\
\text{S.K.94} \quad 82,49 \\
\text{S.K.95} \quad 82,51 \\
\text{S.K.96} \quad 82,53 \\
\text{S.K.97} \quad 82,55 \\
\text{S.K.98} \quad 82,57 \\
\text{S.K.99} \quad 82,59 \\
\text{S.K.100} \quad 82,61 \\
\text{S.K.101} \quad 82,63 \\
\text{S.K.102} \quad 82,65 \\
\text{S.K.103} \quad 82,67 \\
\text{S.K.104} \quad 82,69 \\
\text{S.K.105} \quad 82,71 \\
\text{S.K.106} \quad 82,73 \\
\text{S.K.107} \quad 82,75 \\
\text{S.K.108} \quad 82,77 \\
\text{S.K.109} \quad 82,79 \\
\text{S.K.110} \quad 82,81
کوارتز، پلاتیزکلاز ± سیلیسیات‌های آلومینیوم‌دار، بیونیت در دماهای بالاتری از موسکوت شکسته خواهد شد. مدل واکنش-
های شکست بیونیت به ترکیب پروتونیت و فشار، به تشکیل یک چند کانال مافیک برپا می‌گردد + مایع متنی.

ماهی‌گیران ± کتریت = پلیزکلاز ± کوارتز، بیونیترین این واکنش کانال است. یک‌پایه پروتونیت و ایالیت با احتمال زیاد، به علاوه بیونیت‌های جدید [با Ti، Mg، Fe] پیدا، شکل کلیسی تنشنشی می‌شوند. این واکنش آب‌زدایی بیونیت در فضای P-T به عدم مینیزوم و سنگ میزبان TiO2 محیط بیونیت و مایعه نیاز دارد. تعامل XMG، واکنش می‌باشد.

ناپایداری بیونیت را به دماهای بالاتری سوق می‌دهد [3] در مقایسه با موسکوت، دخالت آب‌زدایی بیونیت به مقادیر قابل توجهی در گستره‌ای 850°C تا 750 تا 850°C بیونیت‌های جامد را تولید می‌کند [31].

در پایین‌تر می‌تواند شرک‌کننده دیگر باشد، هر چه از واحد گروه پلیزکلاز به سمت لوکوگرانیت‌ها نیز درک گوشی می‌شود از محیط آب‌زدایی کاسه شده و به درصد آلپیت پلاژیکلازها افزوده می‌شود. بنابراین گروه‌بندی‌ها ماهی‌گری از پلیزکلاز‌ها در ماهی‌گری‌های اولیه پلیزکلازهای نادی ناتمامیتی بیونیتی، لوکوگرانیت‌های ماهی‌گری‌های تانری ناتمامیتی ماهی‌گری‌های ماهی‌گری‌های پلیزکلازیک‌های که پلیزکلازهای سیلیسیات‌های آلومینیوم‌دار، بیونیت در دماهای بالاتری از موسکوت شکسته خواهد شد. مدل واکنش-

Contribution of Mineralogy and Petrology 100 (1988) 205–212.

[28] Thompson A. B., Algor J. R., "Model systems for anatexis in pelitic rocks: I. Theory of melting reactions in the systems KA\textsubscript{2}O\textsubscript{2}-NaAlO\textsubscript{2}-Al\textsubscript{2}O\textsubscript{3}-SiO\textsubscript{2}-H\textsubscript{2}O", Contribution of Mineralogy and Petrology 63 (1977) 247–269.