زنده‌سازی رسوب‌های رودخانه‌ای، آب و بی‌هنگاری پرتهوتهای U

و تاثیر زیست محتوی آن در زندگی روستاهای منطقه

محمدحسن کریم‌پور، آزده ملکزاده شفروodi

گروه پژوهشی اکتشافات ذخایر معنی‌داری ایران، دانشگاه فردوسی مشهد، ایران

دریافت مقاله: 99/10/20، نسخه نهایی: 99/10/31

چکیده: معدن فیروزه‌نشابور در 55 کیلومتری شمال غربی شهرستان نیشابور استان خراسان رضوی واقع شده است. استخراج و تهیه کردن سلولزی فیروزه در ایران با استفاده از دو روش، ارزیابی نسبت به معدن U-Chalcophosphate و نسبت به سایر مواد دیگر انجام شد. نتایج نشان داد تاثیر دگرگویی قرار گرفتن U، بهبود کیفیت معدن و افزایش سطح مصرف معدن U باعث افزایش استفاده از فیروزه‌نشابور در ایجاد معدن U-Chalcophosphate می‌شود.

واژه‌های کلیدی: زنده‌سازی، رسوب‌های رودخانه‌ای، آب و بی‌هنگاری، زیست محتوی U، معدن فیروزه‌نشابور

مقدمه

امروزه سایل زیست محتوی معنی‌دار به عنوان بخشی از بدن حیاتی به‌ویژه حیوانات و گیاهان، و تغییرات در محیط زیست، نیازمند دقت و توجه برای حفظ شرایط زیستی آنها می‌باشد. در این زمینه، بهره‌برداری به‌طور صحیح و طبیعی از منابع پیش‌بینی شده و پایین‌ترین شرایط محیط زیستی را تأمین می‌کند.

در این مقاله به‌عنوان نمونه‌می‌شود معدن فیروزه‌نشابور در 55 کیلومتری شمال غربی شرقی از تالاب اسپر، شهرستانی عزت‌آباد، استان خراسان رضوی قرار دارد. این معدن در ده‌های بیش از 150 سال استفاده شده است و در حال حاضر در ایجاد شرایط زیست مناسبی با کمک هوا و منابع طبیعی، برای حفظ سلامت حیاتی جمعیت‌های مختلفی مانند حیوانات و گیاهان، معدن‌های مختلف و کمک به درمان بیماری‌های مختلف کمک می‌کند.

کارکرد:

گروه پژوهشی اکتشافات ذخایر معنی‌داری ایران، مidental کریم‌پور، آزده ملکزاده شفروodi

karimpur@um.ac.ir

نویسنده مسئول، تلفن‌نمبر: 0511 (8797775)، پست الکترونیکی:
ژئوفیزیکی که با همکاری سازمان زمین‌شناسی کشور و سازمان انرژی اتمی انجام شده از منطقه موجوداند که نقشه‌های آن‌ها در دسترس نیست و برخی اطلاعات به دلیل نداشتن موقعیت جغرافیایی درست قابل استفاده نیستند. بنابراین گزارش‌ها، ناهمگنی‌هایی از عناصر سن، روزه، نفره، آرستیک، باریم، اورانیم، آنتیمبان و مولیبدن در منطقه وجود دارند. استفاده از و همکاران (7-8) و محمدزاد و همکاران (10-9) سنگنگاری و دوگره‌های زئوشیمی و کانی سازی معدن فیروزه نیشابور را به ترتیب در بخش جنوب غربی آن (گستره تولید اکتشافی غاردور) و بخش شمال شرقی آن (گستره اکتشافی تولید زاک) بررسی کرده‌اند. کریپنر و همکاران (11) معدن فیروزه‌های نیشابور را نسبت‌گذاری کننداری میتواند در حال یک هربرداری هستند. تأییدی بر این ادعای نقشه‌های بسیار قدیمی از فعالیت‌های زئوشیمیایی و جنوب‌شرقی دارد. قرار گرفته است. نوار انششاتی جنوب قوچان ماهیت بالایی به‌گونه‌ای فلایی داشته و سن آن از جنوب (در محور نوار اکولوژی سیزور) به سوی شمال (در جنوب قوچان) از انسن تا پلیستوسن تغییر می‌کند. هر چند کم‌تر از ۱۱۵ کیلومتر از شمال سیزور تا جنوب قوچان طول آن ۲۰۰ کیلومتر از فرود تا نیشابور ادامه داشته و این را نباید رشته کوه‌های بینالود دانستند. سنگ میزان معدن فیروزه نیشابور، بیشتر از واحد‌های انششاتی حدواضع انسن است. 

شکل ۱ نقشه زمین‌شناسی ساده شده معدن فیروزه نیشابور (خلاصه شده از نقشه‌های زمین‌شناسي [17])
زئوشنیمی رضوی‌های رودخانه‌ای، آب و یا هنگاری پرتواهی

۵

جلد ۲۱ شماره ۱ بهار ۱۳۹۲

عناصر مس، سرب، روی، کبالت و تیتان تجزیه شده و تعداد ۱۲ نمونه برای تجزیه عناصر بیشتر علاوه بر عناصر نامبرده با 1DX و به روش ۴B، IFO, ICP-MS و به روش ۴B، IFO5, آزمایشگاه کد unsigned هستند. در روش ۴B و ICP-MS کادانه فشارورانده در دارایی (مقدار ۹۵ درجه) در تاسیمگاه حل و تجزیه شد. در روش ۴B، IFO5 و IFO5A، ۰.۵ گرم از نمونه در دست معدن واقع شدند. از آنجایی که ترکیب‌های مس و باسیاری از عناصر دیگر منطقه در سطح زمین ناپایدار بوده و در آب به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

لذا هدف از این مقاله، بررسی‌های زئوشنیمی-زئوشنیمی-پایینی، مس و مواد بی‌کربن مایع از جهت کثیف کردن پرداختنی‌های فلزی و مس رقی با بهره‌مندی از ترکیب‌های فلزی و مواد بی‌کربن مایع در دست معدن واقع شد. این تردید هنگام به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

روش بررسی

۱۲ این بررسی با استفاده از مس-طلای از مشابه که در دسترس است. در این مقاله محصول از بسیاری از ترکیب‌های مواد با استفاده از ترکیب‌های مواد بی‌کربن مایع در دست معدن واقع شد. این تردید هنگام به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

۱۲ این بررسی با استفاده از مس-طلای از مشابه که در دسترس است. در این مقاله محصول از بسیاری از ترکیب‌های مواد با استفاده از ترکیب‌های مواد بی‌کربن مایع در دست معدن واقع شد. این تردید هنگام به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

۱۲ این بررسی با استفاده از مس-طلای از مشابه که در دسترس است. در این مقاله محصول از بسیاری از ترکیب‌های مواد با استفاده از ترکیب‌های مواد بی‌کربن مایع در دست معدن واقع شد. این تردید هنگام به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

۱۲ این بررسی با استفاده از مس-طلای از مشابه که در دسترس است. در این مقاله محصول از بسیاری از ترکیب‌های مواد با استفاده از ترکیب‌های مواد بی‌کربن مایع در دست معدن واقع شد. این تردید هنگام به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

۱۲ این بررسی با استفاده از مس-طلای از مشابه که در دسترس است. در این مقاله محصول از بسیاری از ترکیب‌های مواد با استفاده از ترکیب‌های مواد بی‌کربن مایع در دست معدن واقع شد. این تردید هنگام به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

۱۲ این بررسی با استفاده از مس-طلای از مشابه که در دسترس است. در این مقاله محصول از بسیاری از ترکیب‌های مواد با استفاده از ترکیب‌های مواد بی‌کربن مایع در دست معدن واقع شد. این تردید هنگام به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

۱۲ این بررسی با استفاده از مس-طلای از مشابه که در دسترس است. در این مقاله محصول از بسیاری از ترکیب‌های مواد با استفاده از ترکیب‌های مواد بی‌کربن مایع در دست معدن واقع شد. این تردید هنگام به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

۱۲ این بررسی با استفاده از مس-طلای از مشابه که در دسترس است. در این مقاله محصول از بسیاری از ترکیب‌های مواد با استفاده از ترکیب‌های مواد بی‌کربن مایع در دست معدن واقع شد. این تردید هنگام به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

۱۲ این بررسی با استفاده از مس-طلای از مشابه که در دسترس است. در این مقاله محصول از بسیاری از ترکیب‌های مواد با استفاده از ترکیب‌های مواد بی‌کربن مایع در دست معدن واقع شد. این تردید هنگام به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

۱۲ این بررسی با استفاده از مس-طلای از مشابه که در دسترس است. در این مقاله محصول از بسیاری از ترکیب‌های مواد با استفاده از ترکیب‌های مواد بی‌کربن مایع در دست معدن واقع شد. این تردید هنگام به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

۱۲ این بررسی با استفاده از مس-طلای از مشابه که در دسترس است. در این مقاله محصول از بسیاری از ترکیب‌های مواد با استفاده از ترکیب‌های مواد بی‌کربن مایع در دست معدن واقع شد. این تردید هنگام به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

۱۲ این بررسی با استفاده از مس-طلای از مشابه که در دسترس است. در این مقاله محصول از بسیاری از ترکیب‌های مواد با استفاده از ترکیب‌های مواد بی‌کربن مایع در دست معدن واقع شد. این تردید هنگام به‌سئولتی حالت محلول حلال موشون، ضرورت داشت تا ترکیب آب و رضوی‌های منطقه‌ای مورد بررسی قرار گیرد.

۱۲ این بررسی با استفاده از مس-طلای از مشابه که در دسترس است. در این مقاله محصول از بسیاری از ترکیب‌های مواد با استفاده از ترکیب‌های مواد بی‌کربن مایع در دست معدن واقع شد. این تردید H
سلامت‌یاد [۱۲] به انسن نسبت داده شده‌اند. این واحدها شامل تراکت، آنزیم، لاتیت و برش آنتی‌فنیکی است که از این میان، تراکت و لاتیت برش‌های گسترده‌ای در منطقه دارد. همچنین میزان آنتی‌فنیکی کرده‌های آژئیکی و غیره قرار گرفته‌اند (شکل ۱). کانالی سازی سولفیدی، اکسیدی اولیه به صورت افتان و دارسی و کانالی سازی نتوانه اغلب نقاط در آن‌ها دیده می‌شود [۱۰].

توده‌های نفوذی نیمه‌عمیق حذف‌پذیر با بیشتر فوریت بیشتر در بخش‌های شمالی و شرقی، از جمله دسته‌های دوگانه آنتاشناشی نفوذ کرده‌اند. این واحدها شامل مغناطیسی، بی‌رسی، رشته‌ریز و رنگ‌پوش سولفیدی‌های آژئیکی و کرده‌های آژئیکی در نقاط مختلف قرار گرفته و رنگ‌پوش سولفیدی‌های است که می‌گویند بیشتر، بیشتر، و مغناطیسی و اکسیدی همراه با کانالی سازی است که در سیستم‌های آژئیکی و مغناطیسی در این است. مغناطیسی و دیگر انواع از نقاط مختلف، قرار گرفته و رنگ‌پوش سولفیدی‌های سطحی در این‌ها دیده می‌شود. این واحدها در واقع رخ‌می‌پذیرد از توده‌های نفوذی نیمه‌عمیق خصوصاً کانالی سازی زیرگ‌منطقه است [۱۰].

"زاویه بی‌رسی و گرمایی در منطقه نزد مشاهده می‌شود که بخش زیادی را به خود اختصاص دادهاند. برش گرمایی که نمی‌تواند در منطقه کانالی سازی نتوانه و بخش از کانالی سازی سولفیدی، اکسیدی را به خود همراه دارد. در منطقه گرمایی دیده می‌شود. این واحدها شامل نقاط منطقه نتوانه از سیستم‌های آژئیکی و مغناطیسی در منطقه است. برش گرمایی نیز به سبب زمین و ساختمان منطقه، کانالی زیادی در منطقه نوکس و جنوب ناحیه دارد (شکل ۴) [۹،۷]."

دگرمانی کانالی سازی: همچنین اخواندانی و نفوذی منطقه، تحت تأثیر دگرمانی قرار گرفته‌اند. پهنه‌های دگرمانی در سطح تا حدود ۵ کیلومتر مربع بوده و در عمق تا به از ۱۰۰ متر تا بیش از
شکل ۲ نقشه درسی‌ان-کانی‌سازی معدن فروزه نیشابور (خلاصه‌ی شده از نقشه‌ی دگرگامه-کانی‌سازی[۱۰۸])

- ناحیه‌ای از نقشه‌ای مربوط به ناحیه‌ای از فروزه نیشابور است که نشان دهندهٔ یک گسترهٔ اصلی گستره‌های کانی‌سازی در دگرگامه‌های درون‌منطقه‌ای است.
- مقدار زیاد اکسیانده‌های آهن در رون اکسایشی که نشان دهندهٔ وجود زیاد کانی‌های سولفیدی در منطقه است.
- زون‌هایی از دگرگامه‌های کانی‌سازی سیلیسی و پس از آن (آرژنیک) در منطقه گسترش دارد. دگرگامه‌های سیلیسی و پتاسی ممکن است در قسمت‌هایی از ناحیه اکسایشی وجود داشته باشند.
- شکل کانی‌سازی به حالت‌های افشان، داربانی و بریش گرمایی
- کنترل‌های خشک‌های زیادی از کانی‌سازی رگ‌چه‌ای وجود دارد (البیش از ۱۵ درصد در زون سیلیسی)
- وجود رگ‌چه‌های اسپیکولاریت در دگرگامه‌های سیلیسی و آرژنیک، همراه با کانی‌سازی مس
- ناحیه‌ای از فروزه‌های مناطقی در کانین‌های کانی‌سازی مس
- محدود بوده که علت حضور کانی‌سازی مگنتی است.
- ناحیه‌ای از کانی‌سازی مس، طلا، عنصری نادر، پداسی، سیلیسی، آرژنیک و آرژنیکی
- بهبود میزان این عنصر در ناحیه‌های کانین‌های کانی‌سازی مس
- ممکن است در منطقه گسترهٔ اصلی‌تر و داربینی‌تر بوده باشد.
گرم در تن است (جدول 1). با وجود اینکه مقادیر بالایی مس در رسوب‌های روی‌خانه‌ای، به‌شکل از آب‌های زیرزمینی منطقه به دست شسته شدند و وردان آن به‌آب‌های زیرزمینی منطقه به دشت پایین دست است. آب‌های روستاهایی به سمت رونا بین ۳۶ تا ۵۷ گرم در تن مس دارند (جدول 1 و شکل ۳).
گرفته از واحدهای سنگی دیاری بیشترین مقدار، پایین‌ترین ماده است که بیانگر شستشوی عنصر روی و ورود آن به آب‌های زیرزمینی است. مقدار بیش از ۱۷۲ گرم در تب روس‌های رودخانهای نمی‌تواند بیش از در آب‌های شرقی شرقی بسیار‌ترین مقدار در این سطح به روند ورود آن به آب‌های زیرزمینی دست گرفته از محل ورود به این مقدار قابل توجهی روز دارد.

(جدول ۱ و شکل ۶.)

ارسنیک: میزان این عنصر در نمونه‌های خردسنجی‌گسترده معدنی بین ۵۰ تا ۲۲۳ گرم در تب است [۱۱۱]. در حالی که
دامنه تغییرات آرسنیک در روس‌های رودخانهای از ۱۶ تا ۴ گرم است (جدول ۱). با وجود شستگی و در تب این عنصر در
نمونه‌های روس‌های رودخانهای مقیاس شده با نمونه‌های کناره- سنگی، مقدار قابل توجهی از این عنصر در آب‌های شرق و
غرب‌منطقه مورد بررسی دیده می‌شود.

انظیمان: میزان این عنصر در روس‌های رودخانهای از ۱ تا ۲۴ گرم نمی‌گیرد (جدول ۱). بیشترین مقدار آن (بیش از ۷ گرم
در تب) از آب‌های غربی منطقه که از محل کانی‌سازی و
معندان کاری ریشه گرفته است، دیده می‌شود (جدول ۱ و شکل
۷.).

اروانیم: میزان این عنصر در نمونه‌های خردسنجی‌گسترده معدنی بین ۱ تا ۲۳ گرم در تب است [۱۱۱]. در حالی که
تغییرات اروانیم در روس‌های رودخانهای از ۸۹ تا ۲۴ گرم
است (جدول ۱). مقدار این عنصر در آب‌های ریشه گرفته از
واحدهای سنگی، دارای بیشترین مقدار، بسیار پایین است که
بیانگر شستشوی اروانیم و ورود آن به آب‌های زیرزمینی دشت
پایین دست منطقه است. بیشترین مقدار اروانیم در آب‌های
مکزی منطقه دیده می‌شود، در حالت که آب‌های آب‌های سمت راست
بین ۱/۵ تا ۱/۵ گرم در تب اروانیم دارد (جدول ۱ و شکل ۶.)
سرب: میزان این عنصر در نمونه‌های خردسنجی‌گسترده
معدنی بین ۳ تا ۱۸ گرم در تب است [۱۱۱]. در حالی که
ی تغییرات سرب در روس‌های رودخانهای از ۱۶ تا ۲۲۴ گرم
است (جدول ۱). تفاوت دچاری بین مقدار سرب در نمونه‌های
خردسنجی و آب‌های ریشه گرفته از آب‌های دیگر نمی‌شود.
بیشترین مقدار سرب در آب‌های شرق منطقه به سمت
روستا، تا مقدار ۲۲۴ گرم در تب نیز بزرگ است (جدول ۱ و شکل ۶.).
روی: میزان این عنصر در نمونه‌های خردسنجی‌گسترده
معدنی بین ۱ تا ۲۲۴ گرم در تب است [۱۱۱], در حالت که
دامنه تغییرات ریوی در روس‌های رودخانهای از ۶۴ تا ۲۴۲
گرم است (جدول ۱). مقدار این عنصر در آب‌های ریشه

شکل ۲ نقشه زئوئیمی روس‌های رودخانهای و نمونه‌های خردسنجی عنصر مس در گستره‌ای معدن فیروزه نیشابور و تواحی شرق آن.

[Downloaded from ijcm.ir on 2022-02-20]
شکل ۴ نقشه زیست‌شیمی رسوب‌های رودخانه‌ای و نمونه‌های خردسنجی عنصر اورانیم در گستره‌های معدن فیروزه نیشابور و نواحی شرق آن.

شکل ۵ نقشه زیست‌شیمی رسوب‌های رودخانه‌ای و نمونه‌های خردسنجی عنصر سرب در گستره‌های معدن فیروزه نیشابور و نواحی شرق آن.
شکل ۶ نقشه زئوکیمی رسوب‌های رودخانه‌ای و نمونه‌های خردسنجی عنصر روی در گسترده‌ترین محدوده معدن‌های نیشان و نواحی شرق آن.

شکل ۷ نقشه زئوکیمی رسوب‌های رودخانه‌ای برای عنصر آنتیمن در گسترده‌ترین محدوده معدن، نیشان و نواحی شرق آن.
نقوش: میزان این عنصر در نمونه‌های خردسنجی گسترشی معده بین ۶۸ تا ۲۰۰۰ میلی‌گرم در تن متغیر است (جدول ۱). مقادیر بیش از ۲۳۰۰ میلی‌گرم در تن در به آب رفته‌های ریشه گرتفه از محل‌های معده کریکاری به بهترین آمده است که نتایج مشابه عنصر نقره و نقره آن به آب‌های زیستی است. بهترین مقادیر نقره در نمونه‌های روس‌های روستایی در آب‌های شرق منطقه (به سمت روس‌های) با ناهنجاری سرب و روز دیده می‌شود (جدول ۱ و شکل ۸).

جدول ۱: مقادیر بین ۶۸ تا ۷۱ میلی‌گرم در تن متغیر است (جدول ۱). مقادیر بیش از ۲۲ میلی‌گرم در تن به آب‌های ریشه گرتفه از محل‌های اصلی و نتایج این است. کلیات: میزان این عنصر در نمونه‌های خردسنجی گسترشی معده بین ۶۸ تا ۲۰۰۰ میلی‌گرم در تن متغیر است (جدول ۱). مقادیر بیش از ۲۳۰۰ میلی‌گرم در تن در به آب‌های ریشه گرتفه از محل‌های معده کریکاری به بهترین آمده است که نتایج مشابه عنصر نقره و نقره آن به آب‌های زیستی است. بهترین مقادیر نقره در نمونه‌های روس‌های روستایی در آب‌های شرق منطقه (به سمت روس‌های) با ناهنجاری سرب و روز دیده می‌شود (جدول ۱ و شکل ۸).

شکل ۸ نقشه زئوشیمی روس‌های روستایی و نمونه‌های خردسنجی عنصر نقره در گسترشی معده فیروزه نیشابور و نواحی شرق آن.
جدول ۲ مقایسه‌ی دانه‌‌های زئوپاتی عناصر در نمونه‌های روسوب‌های روکش‌های معدن فیروزه با مقادیر استاندارد عناصر در حالک [۱۱۶].

<table>
<thead>
<tr>
<th>عنصر</th>
<th>نمونه‌های روسوب‌های روکش‌های معدن فیروزه</th>
<th>مقدار حد مجاز در حالک</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>۲۲ تا ۱۰۰ - میانگین ۳۰ گرم در تن</td>
<td>۲ تا ۱۰۰ - میانگین ۳۰ گرم در تن</td>
</tr>
<tr>
<td>Pb</td>
<td>۱۶ تا ۲۰۰ - میانگین ۱۰۰ گرم در تن</td>
<td>۲ تا ۲۰۰ - میانگین ۱۰۰ گرم در تن</td>
</tr>
<tr>
<td>Zn</td>
<td>۴۴ تا ۲۴۴ گرم در تن</td>
<td>۱۰ تا ۲۰۰ - میانگین ۱۰۰ گرم در تن</td>
</tr>
<tr>
<td>Ag</td>
<td>۲۳۷ تا ۲۴۸ میلی‌گرم در تن</td>
<td>۱۰۰ تا ۲۰۰ - میانگین ۱۰۰ میلی‌گرم در تن</td>
</tr>
<tr>
<td>Ni</td>
<td>۸۷ تا ۳۵ گرم در تن</td>
<td>۵ تا ۱۰۰۰ - میانگین ۵۰ گرم در تن</td>
</tr>
<tr>
<td>Co</td>
<td>۱۱ تا ۱۰۰ - میانگین ۵ گرم در تن</td>
<td>۱ تا ۴۰۰ - میانگین ۸ گرم در تن</td>
</tr>
<tr>
<td>Mn</td>
<td>۲۷۷ تا ۵۵۸ گرم در تن</td>
<td>۲۰ تا ۲۰۰۰ - میانگین ۲۰۰ گرم در تن</td>
</tr>
<tr>
<td>As</td>
<td>۱۶ تا ۲۰ گرم در تن</td>
<td>۱ تا ۵۰۰ - میانگین ۵ گرم در تن</td>
</tr>
<tr>
<td>Sb</td>
<td>۱ تا ۲ گرم در تن</td>
<td>۱ تا ۱۰ گرم در تن</td>
</tr>
<tr>
<td>Hg</td>
<td>۱ تا ۲ میلی‌گرم در تن</td>
<td>۴ تا ۲۰۰ میلی‌گرم در تن</td>
</tr>
<tr>
<td>U</td>
<td>۰ تا ۲ میلی‌گرم در تن</td>
<td>۰ تا ۱ میلی‌گرم در تن</td>
</tr>
</tbody>
</table>

شکل ۹ از تا - مقایسه‌ی دانه‌های زئوپاتی عناصر در نمونه‌های روسوب‌های روکش‌های معدن فیروزه (خط چین) با دامنه‌های مقادیر استاندارد عناصر در حالک (خط ممتنه) و مقدار میانگین آن (علامت دابره).
اطراف معدن سپارنگ از حداکثر استانداردهای معرفی شده در خاک (به ترتیب 5 و 3 میلی گرم در تن) است (جدول-1). مقدار منگنز نیز در نمونه‌های غرب گسترده از میانگین حد مجاز در خاک (3000 گرم در تن) بیشتر است (جدول-1 و 2 و شکل 9). لذا می‌توان نتیجه گرفت که خاک منطقه علاوه بر آلودگی مس و لرانتیم به‌طور قابل‌توجهی آلوده است.

مقدار آرسنیک نیز در همه نمونه‌های روسوبهای رودخانه‌ای از مقدار میانگین 5 گرم در تن بالا است; هرچند که در دانشی معرفی شده قرار می‌گیرند. همچنین آنتیمان حداکثر 20 گرم در تن در گسترده‌های معدن مشاهده شده که 20 گرم در تن آن می‌تواند عادی باشد (جدول-1 و 2 و شکل 9). لذا خاک باید دست منطقه از نظر آرسنیک قابل ملاحظه و تأمین است ولی از جهت آنتیمان خطرناک نیست.

برخی از نتایج نیز در همه نمونه‌های روسوبهای رودخانه‌ای (جدول-1 و 2 و شکل 9) مقداری در حد نیکل وجود دارد.

شکل 11 نقشه پتروسیجی (توریم) در گسترده شمال غرب نیشابور و معدن فیروزه [11].

شکل 10 نقشه پتروسیجی (توریم) در گسترده شمال غرب نیشابور و معدن فیروزه [11].
ژئوشیمی آب نمونه‌های آب معدن فیروزه نیشابور و جدول ۴ نتایج تجزیه عناصر مهم در آب نیشابور

جدول ۴ نتایج تجزیه‌ی عناصر مهم در نمونه‌های آب معدن فیروزه نیشابور.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>Cu</th>
<th>Pb</th>
<th>Zn</th>
<th>Ag</th>
<th>Ni</th>
<th>Co</th>
<th>Mn</th>
<th>As</th>
<th>Sb</th>
<th>Hg</th>
</tr>
</thead>
<tbody>
<tr>
<td>واحد</td>
<td>ppb</td>
</tr>
<tr>
<td>حد تخمین</td>
<td>0,1</td>
</tr>
<tr>
<td>TW-1</td>
<td>0,6*</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>TW-2</td>
<td>0,5*</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>TW-3</td>
<td>0,4*</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
<td>0,4</td>
</tr>
<tr>
<td>TW-4</td>
<td>0,3*</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
<td>0,3</td>
</tr>
<tr>
<td>TW-5</td>
<td>0,2*</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
<td>0,2</td>
</tr>
<tr>
<td>TW-6</td>
<td>0,1*</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
<td>0,1</td>
</tr>
<tr>
<td>TW-7</td>
<td>0,0*</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
<tr>
<td>TW-8</td>
<td>0,0*</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>

جدول ۳ مکاتب دما و pH نمونه‌های آب معدن فیروزه نیشابور.

<table>
<thead>
<tr>
<th>ویژگی نمونه</th>
<th>pH</th>
<th>دما</th>
</tr>
</thead>
<tbody>
<tr>
<td>TW-1</td>
<td>8,5</td>
<td>18</td>
</tr>
<tr>
<td>TW-2</td>
<td>7,5</td>
<td>19</td>
</tr>
<tr>
<td>TW-3</td>
<td>8,6</td>
<td>14</td>
</tr>
<tr>
<td>TW-4</td>
<td>9,5</td>
<td>20</td>
</tr>
<tr>
<td>TW-5</td>
<td>8,5</td>
<td>20</td>
</tr>
<tr>
<td>TW-6</td>
<td>8,9</td>
<td>19</td>
</tr>
<tr>
<td>TW-7</td>
<td>8,7</td>
<td>17</td>
</tr>
<tr>
<td>TW-8</td>
<td>9,1</td>
<td>21</td>
</tr>
</tbody>
</table>

از نمونه‌های آب، pH بخشی از آنها تا حدود 9,5 از درجه 4 و 5 بوده و دما تا حدود 21 درجه یک می‌باشد.
جدول ۵ مقایسه‌ی نتایج زئوشیمیایی نمونه‌های آب گسترده معدن فیروزه و وروستاهای اطراف با مقایسه‌ی استاندارد عناصر در مراجع مختلف.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>نمونه‌های آب</th>
<th>مقادیر حد مجاز در آب</th>
<th>مقادیر حد مجاز در آب آشامبدی</th>
<th>مقادیر حد مجاز در آب آشامبدی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cu</td>
<td>۱۰۰ ppm</td>
<td>۱ ppm</td>
<td>۱۰ ppm</td>
<td>۱ ppm</td>
</tr>
<tr>
<td>Pb</td>
<td>۱۰ ppm</td>
<td>۱ ppm</td>
<td>۱۰ ppm</td>
<td>۱ ppm</td>
</tr>
<tr>
<td>Zn</td>
<td>۱۰ ppm</td>
<td>۳ ppm</td>
<td>۱۰ ppm</td>
<td>۱ ppm</td>
</tr>
<tr>
<td>Ag</td>
<td>۵ ppm</td>
<td>۳ ppm</td>
<td>۱۰ ppm</td>
<td>۱ ppm</td>
</tr>
<tr>
<td>Ni</td>
<td>۵ ppm</td>
<td>۱ ppm</td>
<td>۱۰ ppm</td>
<td>۱ ppm</td>
</tr>
<tr>
<td>Mn</td>
<td>۱۰ ppm</td>
<td>۱ ppm</td>
<td>۱۰ ppm</td>
<td>۱ ppm</td>
</tr>
<tr>
<td>As</td>
<td>۵ ppm</td>
<td>۱ ppm</td>
<td>۱۰ ppm</td>
<td>۱ ppm</td>
</tr>
<tr>
<td>Sb</td>
<td>۵ ppm</td>
<td>۱ ppm</td>
<td>۱۰ ppm</td>
<td>۱ ppm</td>
</tr>
<tr>
<td>Hg</td>
<td>۱ ppm</td>
<td>۱ ppm</td>
<td>۱۰ ppm</td>
<td>۱ ppm</td>
</tr>
<tr>
<td>U</td>
<td>۲۴ ppm</td>
<td>۲ ۴ ppm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

برداشت

معدن فیروزه نیشابور نخستین کانساز مس- طلا- اورامین- عنصر نادر خاکی سبک نوع IOCG در ایران است که توسط کرومپور و همکاران [۱۱۱] معرفی شده است. علاوه بر عنصر مس، طلا و اورامین، این منطقه برای آرسنیک، مودیم، روی و تورمین ناهنجاری بالایی دارد [۱۱۱].

فعالیت‌های معدن کاری که از گذشته در معدن فیروزه نیشابور صورت گرفته است با ایجاد شرایط نامطلوب، نظر رهاسازی دیهوهای ماده‌ی معدنی و ماده باطله در کار حیمی آراهماهی اصلی، منجر به یه رشته‌های زئوشیمیایی در رسوب‌های رودخانه‌ای خاک و گاهی آب‌های زیرزمینی محلی می‌شده است.

از رایی‌های زئوشیمیایی، زئوشیمیایی در رسوب‌های آراهامه- ای ریشه گرفته از گسترده معدن و شرق آن نکته زیر را آشکار کرده‌است:

۱ مقادیر مس در پیشتر نمونه‌ها از میانگین مقادیر استاندارد مس در خاک (۳۰۰ گرم در تن) پیشتر است. به‌طور نمونه‌ای که از محل تولید و کنده‌گری‌های معدن سرچشمه گرفته‌اند، به حساب از ۱۰۰ گرم در تن نیز مس دارند که این مس اغلب گودگی خاک منطقه به مس را نشان می‌دهد.

۲) تقریب‌های همسان نمونه‌ها، مقدار اورامین پیش از مقدار میانگین استاندارد (دیگ گرم در تن) دارد. همچنین ناهنجاری‌
ارزیابی زئوپتیشیمیایی - یست مکانیکی آب‌های داخل تونل‌ها که بیشتر برای مصارف کشاورزی و حتی آشامیدنی روستاهای معدن بالا و پایین استفاده می‌شود، آب قنات‌های داخل در روستا و اب آشامیدنی آن‌ها تنها مقدار که خوشخانگی عناصر سوپر، مرکز، نیکل، مکنزی، آنیون، جویو و اورامی بسیار نمی‌توانند آب کمتر از هدایت و مطلوب است. به یک‌بندی به غذای آب‌انداز کشیدن در آب آشامیدنی (10 ممیلی گرم در تن) به نظر داریم (14 و (15، مقدار آرتسیک آب قنات روستایی معدن بالا که برای مصرف کشاورزی استفاده می‌شود در هر 1 تا 6 ممیلی گرم در تن از استاندارد بالاتر است. بالا بودن عناصر پتروپیان انواع انرژی در منطقه بزرگ‌ترین خطر تهیه کننده مردم روستاهای معدن بالا و معدن پایین است که می‌تواند باعث بروز انواع سرطان‌های مختلف، بهبود زیدنی در سل‌های آینده و در نهایت مارگ شود. لذا پیشنهاد می‌شود تا عملیات پتروتکنیزم زمینی و تعیین مقدار پتروپیان خطرناکی در بخش‌های مختلف ناحیه انجام گیرد و از حضور مردم در مناطقی که مربوط به بالا گروه‌گیری شود. همچنین آلودگی خان منطقه به یک عنصر باعث آلودگی محصولات کشاورزی نیز می‌شود.

از طرف دیگر آلودگی رسوب‌های آبراههای این منطقه دست معدن با عنصر مس، جویو، نقره و مکنزی آلودگی آب مصرفی کشاورزی به عنصر آرتسیکی می‌تواند منجر به آلودگی محصولات کشاورزی و به بیروی آن مردم منطقه شود. بالا بودن این عنصر در غذا باعث افزایش سطح پیچیدگی بیماری‌های کلیوی، کبدی و پوستی می‌شود. لذا می‌پایست تبدیلات برای جلوگیری از ورود این عنصر به محصولات کشاورزی در نظر گرفته شود.

فقرات
این پروژه با حمایت مالی دانشگاه فردوسی مشهد در ارتباط با طرح پژوهشی شماره ۲ ۱۳۸۸/۱۲/۱۵ بر اثر طرح پژوهشی انجام شده است.

مراجع

volcanics between Kashmar, Sabzevar and Quanch INE Iran", Geodynamic project (geotraverse) in Iran, Final report, Geo. Suv of Iran, Report no.51 (1983).
[7] استفاده از مکروگریفایل (نشریه پژوهشی) و اکتشافات زئوپتیشیمیایی (رسوایی رادیواکتیو و خردسنجی) در محدوده اکتشافات تونل غار‌دار، معدن فیروزه نیشابور، دومن همیش انجمن زمین‌شناسی اقتصادي ایران.
[8] استفاده از فیروزهی فیروزه‌خانه‌ای و خردسنجی (نشریه پژوهشی) در محدوده اکتشافات تونل غار‌دار، معدن فیروزه نیشابور، دومن همیش انجمن زمین‌شناسی اقتصادي ایران.
[9] محمدزاد ح، (نشریه پژوهشی) در محدوده اکتشافات تونل غار‌دار، معدن فیروزه نیشابور، دومن همیش انجمن زمین‌شناسی اقتصادي ایران.
[10] محمدزاد ح، (نشریه پژوهشی) در محدوده اکتشافات تونل غار‌دار، معدن فیروزه نیشابور، دومن همیش انجمن زمین‌شناسی اقتصادي ایران.

[10] محمدزاد الف، کریپور مح، ملکزاده شفاهودی، الگوی محدوه‌ای انتسابی و پذیرفتنی مغناطیسی توده‌های نفوذی، مجله زمین‌شناسی انتسابی ایران، 1396.(1396)
[11] کریپور مح، ملکزاده شفاهودی الف، اسفندیاری‌پور الف، محمدزاد ح، مکفی‌بودن فیزیولوژی نیش‌پرور نخستین کلاس سازی مس-طلای اورانیوم- عناصر تادر خاکی سبک نوع I O C G در ایران، مجله زمین‌شناسی انتسابی ایران، در حال چاپ (1396).
[12] اکرمی حجعی، مسکری عیسی، کنده زمین‌شناسی، سلطان آباد، ساربان زمین‌شناسی و اکتشافات معدنی کشور ایران، 1379.