تکیه تورمالین در پگماتیته‌های چاه رویی، جنوب غربی نهنگدان

سلیمان احمدی بنکدار*، علی احمدی
گروه زمین شناسی، دانشکده علوم، دانشگاه سیستان و بلوچستان

چکیده: در منطقه‌های چاه رویی جنوب غربی نهنگدان، پگماتیته‌های تورمالینی در این زمینه مورد استفاده قرار گرفته‌اند. پگماتیته‌های تورمالینی در این منطقه تاکنون با استفاده از روش‌های مختلفی شناسایی شده‌اند. در این تحقیق، پگماتیته‌های تورمالینی در هر دو نوع پگماتیته‌ها موجود در چاه‌رویی تورمالین در این منطقه با استفاده از روش‌های مختلفی شناسایی شده‌اند. این پگماتیته‌های تورمالینی در این منطقه با استفاده از روش‌های مختلفی شناسایی شده‌اند. این پگماتیته‌های تورمالینی در این منطقه با استفاده از روش‌های مختلفی شناسایی شده‌اند.

واژه‌های کلیدی: پگماتیته‌های تورمالینی، عنصر کم، مقدار، چاه رویی

مقدمه و زمین‌شناسی
از انجاکه پگماتیته‌ها حاوی کالی‌ها و عنصر با ارزش هستند، بنابراین، این ماده‌های فراوانی دارند. پگماتیته‌های چاه‌رویی در جنوب شرقی بلوک لوت و در حاشیه‌های فلز خارجی، بیشتر میان بلوک لوت و در مرز بلاروش، در سیستان (suture zone) قرار دارند و در فاصله‌های 1-3 کیلومتر جنوب غربی نهنگدان (شکل 1) و در نقشه زمین‌شناسی 1000000:11 جهابشا 111 (شکل 2) و تقریباً در عرض گرافیتی 5°31' و 31°31' شمالی و طول گرافیتی 45°59' و 14°59' شرق و قرار داشته، در منطقه‌های چاه‌رویی پگماتیته‌های تورمالینی از براز رنگ دیده شده است. پگماتیته‌های تورمالینی، در این منطقه، با استفاده از روش‌های مختلفی شناسایی شده‌اند. این پگماتیته‌های تورمالینی، در این منطقه، با استفاده از روش‌های مختلفی شناسایی شده‌اند. این پگماتیته‌های تورمالینی، در این منطقه، با استفاده از روش‌های مختلفی شناسایی شده‌اند.
شکل 1 نقشه راه‌های دسترسی به منطقه چاه روبی.

شکل 2 نقشه زمین شناسی منطقه چاه روبی[1].

مجموعه دگرگونی در سلم قرار دارد (شکل‌های ۲ و ۳). کانی‌های این توده شامل پلازه‌بوقعلا، فلزسیرفلایی، کوارتز، بیوتیت و کانی‌های فرآی آپیت و زیرکن است و بر اساس نقشه‌های زمین شناسی سازمان زمین شناسی[11]، کانی‌های آن دارای ساختار میکروماکرویکریولوژیکی هستند که جزء از مجموعه دگرگونی به طور مداوم در میان‌رسیده‌اند.

[2] نام کانی‌های مختلفی را می‌تواند در بسیاری از مناطق داشته باشد. به عنوان نمونه، به کانی‌های میکروماکرویکریولوژیکی تا دامنه آگاژی (گرماپن) تغییر می‌کند.

[3] چاه روبی نزدیک به سرزمین‌های جنوبی و بخش شمالی سمنوس-الیگوس در حاشیه‌ای
ترکیب تورمالین در پگماتیت‌های جبه روبی، جنوب غربی هندوان

شکل ۲ عکس ماهواره ای از منطقه جبه روبی.

نتایج به دست آمده از مشاهدات صحرایی و میکروسکوپی و آنالیزهای ریزپردازشی الکترونی و ترکیب و خاستگاه تورمالین در پگماتیت‌های جبه روبی تعبین شده.

از نگاه تورمالین کلی مهم برای دنیای کردن گسترش ترکیب سنتگهای آذرین و دگرگونی است و می‌تواند در بسیاری از نقش‌ها به عنوان یک نمایشگر نشت‌های بار رود [۸] در نتیجه در این پژوهش بعنوان یک شده تا با استفاده از
روش بررسی

از آنجاکه ترکیب سنگ‌شناسی یک‌گاتنی‌ها نسبتاً تقریباً یکسان است، در ترتیب نمونه‌های زیادی که جمع آوری شده، نمونه‌های محوطه‌ای نزدیک به یک‌گاتنی‌ها بزرگ مسئله باشند. منظور بررسی ترکیب شیمیایی، ترکیب فرمول اختری از ترکیب‌های موجود در آنها با استفاده از یک رژیم‌داردهی الکترونی (model JEOL Superprobe 737) داشته‌گاه نیوبراتوکسیک با ولتاژ شتاب دهنده 10 کیلو ولت، زمان شمارش 20 ثانیه بر عنصر و با شعاع باربرگ‌های الکترونی 1‌آکتستروم در آنالیز‌های تحلیل شونده بیان گردید تا تمام کامی‌ها و یک‌گاتنی‌ها بیشتر تحلیل آنالیز شدن، و نتایج آن تعیین می‌گردد.

جدول 1: نتایج آنالیز رزیبرادی‌سی الکترونی در نمونه‌های تورمالین در منطقه‌های جنوب غربی هندستان.

<table>
<thead>
<tr>
<th>تورمالین‌های موجود در یک‌گاتنی‌های تورمالین</th>
<th>CH3</th>
<th>CH2</th>
<th>CH1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO2</td>
<td>75.1</td>
<td>72.6</td>
<td>75.4</td>
</tr>
<tr>
<td>Al2O3</td>
<td>37.1</td>
<td>30.3</td>
<td>40.7</td>
</tr>
<tr>
<td>MgO</td>
<td>12.1</td>
<td>14.5</td>
<td>17.2</td>
</tr>
<tr>
<td>FeO</td>
<td>15.0</td>
<td>19.4</td>
<td>13.2</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.8</td>
<td>0.6</td>
<td>0.2</td>
</tr>
<tr>
<td>TiO2</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
</tr>
<tr>
<td>MnO</td>
<td>0.5</td>
<td>0.6</td>
<td>0.3</td>
</tr>
<tr>
<td>Na2O</td>
<td>1.4</td>
<td>1.7</td>
<td>1.2</td>
</tr>
<tr>
<td>CaO</td>
<td>2.8</td>
<td>3.4</td>
<td>2.7</td>
</tr>
<tr>
<td>K2O</td>
<td>0.1</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>Total</td>
<td>85.7</td>
<td>86.4</td>
<td>85.6</td>
</tr>
<tr>
<td>B2O3</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2</td>
</tr>
<tr>
<td>Li2O*</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
</tr>
</tbody>
</table>

* فرمول ساختنی

<table>
<thead>
<tr>
<th>ترکیب</th>
<th>فرمول ساختنی</th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>85</td>
</tr>
<tr>
<td>Al</td>
<td>85</td>
</tr>
<tr>
<td>Mg</td>
<td>85</td>
</tr>
<tr>
<td>Fe</td>
<td>85</td>
</tr>
<tr>
<td>Cr</td>
<td>85</td>
</tr>
<tr>
<td>Mn</td>
<td>85</td>
</tr>
<tr>
<td>Na</td>
<td>85</td>
</tr>
<tr>
<td>Ca</td>
<td>85</td>
</tr>
<tr>
<td>K</td>
<td>85</td>
</tr>
<tr>
<td>X total</td>
<td>85</td>
</tr>
</tbody>
</table>

* مدل‌های جدید
جدول 2 نتایج آنالیز ICP در نمونه‌های تورمالینی و نمونه‌های توده گرافیتندی چاه روبی، عناصری که با (3) مشخص شدهاند، بر اساس درصد ppm محاسبه شده‌اند.

<table>
<thead>
<tr>
<th>نمونه‌های توده گرافیتندی چاه روبی</th>
<th>نمونه‌های موجود در گیماتین</th>
<th>تورمالین‌های موجود در گیماتین</th>
<th>تورمالین‌های موجود در گیماتین</th>
<th>تورمالین‌های موجود در گیماتین</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>G1</td>
<td>G2</td>
<td>G3</td>
<td>G4</td>
</tr>
<tr>
<td>La</td>
<td>0.46</td>
<td>0.29</td>
<td>0.41</td>
<td>0.59</td>
</tr>
<tr>
<td>Ce</td>
<td>0.33</td>
<td>0.56</td>
<td>0.51</td>
<td>0.70</td>
</tr>
<tr>
<td>Pr</td>
<td>0.15</td>
<td>0.60</td>
<td>0.32</td>
<td>0.34</td>
</tr>
<tr>
<td>Nd</td>
<td>0.31</td>
<td>0.56</td>
<td>0.52</td>
<td>0.70</td>
</tr>
<tr>
<td>Sm</td>
<td>0.49</td>
<td>0.51</td>
<td>0.52</td>
<td>0.70</td>
</tr>
<tr>
<td>Eu</td>
<td>0.26</td>
<td>0.28</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>Gd</td>
<td>0.44</td>
<td>0.56</td>
<td>0.52</td>
<td>0.70</td>
</tr>
<tr>
<td>Tb</td>
<td>0.26</td>
<td>0.28</td>
<td>0.23</td>
<td>0.24</td>
</tr>
<tr>
<td>Dy</td>
<td>0.19</td>
<td>0.29</td>
<td>0.25</td>
<td>0.31</td>
</tr>
<tr>
<td>Ho</td>
<td>0.15</td>
<td>0.18</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>Er</td>
<td>0.08</td>
<td>0.15</td>
<td>0.22</td>
<td>0.24</td>
</tr>
<tr>
<td>Tm</td>
<td>0.21</td>
<td>0.25</td>
<td>0.21</td>
<td>0.29</td>
</tr>
<tr>
<td>Yb</td>
<td>0.15</td>
<td>0.18</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>Lu</td>
<td>0.23</td>
<td>0.24</td>
<td>0.22</td>
<td>0.23</td>
</tr>
<tr>
<td>Ba</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
<td>0.44</td>
</tr>
<tr>
<td>Sr</td>
<td>0.28</td>
<td>0.29</td>
<td>0.27</td>
<td>0.29</td>
</tr>
<tr>
<td>P*</td>
<td>0.18</td>
<td>0.15</td>
<td>0.17</td>
<td>0.18</td>
</tr>
<tr>
<td>Zr</td>
<td>0.28</td>
<td>0.29</td>
<td>0.27</td>
<td>0.29</td>
</tr>
<tr>
<td>Hf</td>
<td>0.25</td>
<td>0.26</td>
<td>0.24</td>
<td>0.25</td>
</tr>
<tr>
<td>Ti*</td>
<td>0.31</td>
<td>0.31</td>
<td>0.30</td>
<td>0.31</td>
</tr>
<tr>
<td>Y</td>
<td>0.15</td>
<td>0.18</td>
<td>0.16</td>
<td>0.17</td>
</tr>
<tr>
<td>∑REE</td>
<td>0.72</td>
<td>0.74</td>
<td>0.72</td>
<td>0.74</td>
</tr>
<tr>
<td>(La,Yb)N</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
</tr>
<tr>
<td>(La,Sm)N</td>
<td>0.31</td>
<td>0.32</td>
<td>0.31</td>
<td>0.32</td>
</tr>
</tbody>
</table>

رنگ‌گاها آبی، و نیز چند نگی از قهوه‌ای کم رنگ تا فیله‌ای، پرنگ دیده می‌شود (شکل‌های 5، 6). تحلیل ریزبی‌داری الکترونی

در بررسی مقطع‌های نارک، کانون‌های تورمالین، پونیت، پلاژیوکلاز، اروکیالز، کوارتز در گیماتین‌ها و کانی‌های تورمالین، مسکونیت، پلاژیوکلاز، اروکیالز و کوارتز در گیماتین‌ها نمایش داده شدند (شکل‌های 5، 6). بافت‌های غالب در هر دو نوع گیماتین، میریسانت، پونیت، آنتی پونیت و غربالی‌هایی در زیر میکروسکوپ، تورمالین‌های رنگ سیز نیز تهیه شد.
$B = B$, Vacant
$V = OH, O, (F)$
$W = OH, F, O$

$Y = Li, Mg, Fe^{2+}, Mn^{2+}, Al, Cr^{3+}, V^{3+}, Fe^{3+}, (Ti^{4+})$
$Z = Mg, Al, Fe^{3+}, V^{3+}, Cr^{3+}$
$T = Si, Al, B$

شکل ۵ عکس‌هایی از کانی‌ها در مقطع میکروسکوپی الف (نماهایی از مقطع میکروسکوپی تورمالین ب) نماهایی از مقطع میکروسکوپی مناسب ترا گر (نماهایی از تورمالین که به‌وسیلهٔ کوارتز احاطه شده‌اند) نماهایی از تورمالین در کان بزیت کلاژ (نماهای عکس‌ها در حالت PL گرفته شده‌اند).

شکل ۶ تصاویر میکروسکوپ الکترونی. الف) تصویری از مقطع طلایی از تورمالین ب) تصویری از مقطع عرضی از تورمالین.
ترکیب تورمالین در پگماتیت‌های چاه رویی، جنوب غربی نهنگان

میزان لیتیم در تورمالین با استفاده از رابطه $Y = 3\sum (Fe + Mg) = 31$ در جایگاه Y انتخاب می‌شود. نمونه‌های تورمالین چاه رویی از نظر آلومینیم غنی‌اند (شکل 10) و از انجاکه میزان آلومینیم در تورمالین‌های منطقه‌ای مورد بررسی با است در نتیجه جانشینی‌های تورمالین‌های ناچیز یعنی جانشینی جزئی از نظر قلیایی $(Mg,Fe)Na(AlO)\cdot 1$ و $l(Mg,Fe)OH(AlO)\cdot 1$ در آن‌ها صورت می‌گیرد ولی جانشینی اوتیت $(Ca(Fe,Mg)AlNa)\cdot 1$ در آن‌ها صورت نگرفته (شکل 11).

* Schorl: Na $Fe^{3+}_{3}Al_{2}Si_{2}O_{18}(BO_{3})_{3}(OH)_{3}(OH)$ - دراویت: Na $Mg_{3}Al_{2}Si_{3}O_{18}(BO_{3})_{3}(OH)_{3}(OH)$ نمونه‌های تورمالین چاه رویی در پالت خنثی

![Diagram](image-url)
\[\sum (\text{Fe} + \text{Mg}) = 3 \]

شکل 9 نمودار Fe به مقدار Mg نسبت به

شکل 10 نمودار Al نسبت به Fe/(Fe + Mg) و مقایسه ترکیب تورمالین‌های چاپ رویی با ترکیب ابده آل شورل- دراویت. ترکیب‌های تورمالین چاپ رویی غی از آلومینیم نشانه‌ها مانند شکل 8.

شکل 11 نمودار R1 + R2 نسبت به R3 برای نمایش نقاط در تورمالین [15].

\[R3 = \text{total Al} + 1.33\text{Ti} \] و \[R1 = \text{Ca + Na} \]

\[R2 = \text{Fe + Mg + Mn} \]
نتیجه آنالیز ICP برای نمونه‌های تورمالینی و سنگ‌های گرانیت‌شناسی چاه رودی در جدول ۲ آورده شده است. در نمونه‌های تورمالینی، انرژی نادر خاکی (شکل ۲۰) برای نمونه‌های تورمالینی، آب‌های بیشتری به وجود دارد تا در هیدروژن، محیط‌های بهینه‌تر باشد. در نمونه‌های بهینه‌تر (بعضی از بهینه‌جا) می‌توان نشان‌داد که با ثبات و متقابلیت بالاتر در REE، بهینه‌جایی تغییرات در دیگر سنگ‌های تورمالینی وجود دارد.

در نمونه‌های چاه رودی (شکل ۲۱) برای نمونه‌های تورمالینی، میانگین میزان تورمالینی در های ۱۹۹۹ و ۱۹۹۸ بالاتر از مقدار تورمالینی در های ۱۹۹۷ و ۱۹۹۶ بوده است. در های ۱۹۹۹ و ۱۹۹۸ میزان تورمالینی این مقدار‌ها به ترتیب ۱۹۲ و ۱۹۳ بالاتر از مقدار تورمالینی در های ۱۹۹۷ و ۱۹۹۶ بوده است. در های ۱۹۹۷ و ۱۹۹۸ میزان تورمالینی این مقدار‌ها به ترتیب ۱۹۲ و ۱۹۵ بالاتر از مقدار تورمالینی در های ۱۹۹۷ و ۱۹۹۶ بوده است.

دوره‌های انرژی‌های سنگ‌های تورمالینی هم‌زمان میزان افزایش یافته در این دوره‌ها میزان تورمالینی در های ۱۹۹۷ و ۱۹۹۶ بوده است. در های ۱۹۹۷ و ۱۹۹۸ میزان تورمالینی این مقدار‌ها به ترتیب ۱۹۲ و ۱۹۳ بالاتر از مقدار تورمالینی در های ۱۹۹۷ و ۱۹۹۶ بوده است. در های ۱۹۹۷ و ۱۹۹۸ میزان تورمالینی این مقدار‌ها به ترتیب ۱۹۲ و ۱۹۵ بالاتر از مقدار تورمالینی در های ۱۹۹۷ و ۱۹۹۶ بوده است. در های ۱۹۹۷ و ۱۹۹۸ میزان تورمالینی این مقدار‌ها به ترتیب ۱۹۲ و ۱۹۵ بالاتر از مقدار تورمالینی در های ۱۹۹۷ و ۱۹۹۶ بوده است.
نمودار ۲۱) نمودار عناصر نادر حاکم نمونه‌های نورمالینی و توده‌گرانیتودی جاه رودی و به هنگام شده نسبت به کندریت ناکامپا [۹۱]. نشان‌هایی ها مانند شکل الف.

نمودار عکوبونی نمونه‌های نورمالینی و توده‌گرانیتودی جاه رودی و به هنگام شده نسبت به کندریت تامپسون [۱۴۱]. نشان‌های خاکستری‌های تورمالین‌های جاه رودی بیشتر در گستره سینگ- Ca های کوارتز-نورمالین و منابعی‌ها و منابعی‌ها فسفر از که تراشید به سمت گستره‌های گرانیتودی‌های فسفر از لیپوم و بگمانتها و آلبیت‌های وابسته به آنها، تعبیه شد (شکل ۱۲). این نشان از این دارد که نورمالین‌ها در اثر واکنش‌های سنگ‌های درگرنگ اطراف توده‌گرانیتودی با فرآیندهای خاستگاه تورمالین‌های جاه رودی بیشتر در گستره سینگ- Ca های کوارتز-نورمالین و منابعی‌ها و منابعی‌ها فسفر از که تراشید به سمت گستره‌های گرانیتودی‌های فسفر از لیپوم و بگمانتها و آلبیت‌های وابسته به آنها، تعبیه شد (شکل ۱۲).

ماگماتای گرانیتودی جاه رودی در مراحل تأخیری- غربالی به وجود آمده‌اند. در مشاهده‌های صحیح‌تر نورمالین در پیگمانت‌های CH نوع بخش‌هایی از گرانیتودی که با سنگ‌های دگرگونی در میان‌آمده است، از فراوانی زیادی برخوردار است (شکل ۱۳)، و این نشان دهنده این است که در اثر واکنش‌های فراهندهای ماگماتای گرانیتودی.
شرار مگامیتیه چاه روبی در مراحل تأخیری-گرمنی و سنگهای دگرگونه در سطح فراهم می‌شود. در نمونه‌های سنگهای دگرگونه، بیشترین میزان ترورالیس دارای نشان از احتمال نفوذی‌های سنگهای دگرگونه و یا اختلال شاره مکملی با سنگهای دگرگونه دارد. به‌طور کلی این نشان از شاره مکملی دارای نشانی است، و در مقابل بیشترین سنگهای دگرگونه در سطح فراهم می‌شود.

 Nabeyi (2017) ترورالیس چاه روبی در مراحل تأخیری-گرمنی و سنگهای دگرگونه در سطح فراهم می‌شود. برخی از نیروهای سنگهای دگرگونه در سطح فراهم می‌شود. به‌طور کلی این نشان از شاره مکملی دارای نشانی است، و در مقابل بیشترین سنگهای دگرگونه در سطح فراهم می‌شود.

\[\text{ترورالیس چاه روبی در مراحل تأخیری-گرمنی و سنگهای دگرگونه در سطح فراهم می‌شود.} \]

\[\text{برخی از نیروهای سنگهای دگرگونه در سطح فراهم می‌شود.} \]

\[\text{به‌طور کلی این نشان از شاره مکملی دارای نشانی است، و در مقابل بیشترین سنگهای دگرگونه در سطح فراهم می‌شود.} \]

\[\text{ترورالیس چاه روبی در مراحل تأخیری-گرمنی و سنگهای دگرگونه در سطح فراهم می‌شود.} \]

پایداری دمایی این انجام می‌شود یعنی اول بیوتین، بعد تورمالین- بیوتین، کوارتز- فلدسپات، مسکوئیت- تورمالین ایجاد می‌شود.

4- خاستگاه هر دو نوع پگماتیت، در اثر واکنش‌های بین مالتی‌گرانت‌تودی جاه روبی در مراحل تأخیری- گرما در سنگ‌های برگزاره تزریق ده سل سل قشنگ آن (اکثریت بیاید و اندولوژی شیست‌ها) است. به میان یوز مورد نیاز برای تشکیل تورمالین در دو نوع پگماتیت، یکسایی مانگامای جا روی در مرحله‌های تأخیری تورمالین تأمین شده است.

قوت‌دیانی

با توجه و سیاسی سیاسی زیاد از استاد گرامی جانک دکتر علی احمدی ضعیف هیئت علمی دانشگاه سیستان و بلوچستان که همیشه فعال و مشاور در انجام این پروژه بودند و زحمت تجزیه و آنالیز نمونه‌ها در کنار او به راه اندازی است. تشریح و قدردانی از جانک دکتر گروهی عضو هیئت علمی دانشگاه سیستان و بلوچستان به دلیل راهنمایی‌ها و پیشنهادات شان که در انجام پروژه بهمین سیستم داشته، همچنین سیاست فواید از انجام‌پذیری و بیز جناب آقایان مهندس ساسان غفاری و بهنیسی علی و بیژن به راهکار و حمایت‌شان در پایان از پیشنهادات سازندگی داوران مجله در ارائه پیرتر مقام‌های تشریح و قدردانی می‌شود.

مراجع

[1] پایداری دمایی این انجام می‌شود یعنی اول بیوتین، بعد تورمالین- بیوتین، کوارتز- فلدسپات، مسکوئیت- تورمالین ایجاد می‌شود.