سنج شناختی و زئوشیمی توعده‌های نفوذی-نیمه نفوذی و ارتباط آنها با کانه زایی اسکارن

آهن در منطقه بیشه (شرق ایران - جنوب بیرجند)

مليحه نقیعی ۱، محمدحسین کرمی‌پور ۲، سیداحمد مظاهری ۲، محمدرضا حیدریان شهری ۲، محمدرضا زرین کوب ۲

۱- گروه زمین شناسی، دانشگاه فردوسی مشهد
۲- گروه زمین شناسی، دانشگاه بیرجند

(دریافت مقاله:۹۱/۱۰/۰۹، نشخه نهایی:۹۱/۱۸/۲۲)

چکیده: منطقه‌ی مورد بررسی در شمال شرقی بلوک لوت و در ناحیه زمین‌شناسی ۱۰۰۰۰۰ بسیار فراغت است. نفوذ سنگ‌های عمیق‌تری در سنج‌های اکشن‌پوش باعث تشکیل اسکارن و کانه‌سازی آهن در این منطقه شده است. بررسی‌های سنگ‌گزاری نشان داد که سنگ‌های مورد بررسی شامل هورنلبند، دوربری، دوربری‌پورفیری، هورنلبند، کانتر دوربری‌پورفیری، پیروکسند دوربری‌پورفیری، هورنلبند، دوربری، دوربری‌پورفیری، هورنلبند، دوربری و بوئینت دوربری‌پورفیری، این سنگ‌ها در ارتفاع ماهیت شیل‌هایی و میان الولیوم بوده و بستر پذیرفته‌های مغناطیسی و ویژگی‌های زئوشیمی‌ای و حالت‌های جداینده دارای این گروه‌ها. نتیجه‌گیری‌هایی از این گروه‌ها به نظر می‌رسد که اسکارن‌های آهن است. در نتیجه نمایشی مختلف زئوشیمی‌ای نشان دهنده‌های ممکن است این اسکارن‌های کانه‌سازی آهن است.

واژه‌های کلیدی: لوت، اسکارن آهن، گراتیوئید، بیشه

مقدمه

در زمان‌های مختلف در بلوک لوت برقرار بوده است، کانه‌های مختلفی در بلوک لوت برقرار بوده است، کانه‌های مختلفی در بلوک لوت برقرار بوده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است.

در واقع سنج‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفیری، پیروکسند و دیوربری‌پورفیری، یک تریل و انواع

کانه‌سازی رگه‌های در این بلوک رخ داده است. این کانه‌ها متشکل از سنگ‌های پورفی

makhiae2002@yahoo.com

** نویسنده مسئول، تلفن-نامه: ۸۷۶۷۳۷۵۸۶ (۵۱۱)، پست الکترونیکی: makhiae2002@yahoo.com**
روش ذوب قلبی‌ای آماده و سپس برای عناصر فرعی و نادر خاکی (REE) می‌شوند.

زمین‌شناسی و سنگ‌شناسی

واحدهای سنگی منطقه را مستقیماً در پنج گروه سنگ‌های رسوبی، سنگ‌های آدریان، عمیق و نیمه عمیق، گدازه‌ها، آدریاریوی و اسکننده تقسیم کرد (شکل 1). قدمت ترمیم واحد چندسکن منطقه‌ای مورد بررسی، شیل و سنگ‌های آهتزیت و رسوبی قاعده‌ای پالیسن به نگه‌دارنده و امکان‌های توده‌ای و ضخیم‌ترین ریزگیره‌ها و فشرده‌های پالیسن به دارای ریز فسیلی‌ها پالیسن هستند به صورت درخشش روی شیل و سنگ سوزاسیک گزارش گرفته‌اند. واحدهای ماکسیمال ترکیب شامل سنگ‌های گدازه‌ای، آدریاریوی و نفوذی-نیمه نفوذی، اگزه و واحدهای سنگی منطقه‌ای را نشان می‌دهند. سنگ‌های آهتزیت-آوستیسیسن به این دسته [14]. شامل اندزیت، قطعات و توده‌ای سنگ‌های هستند که به سیلیس سنگ‌های عمیق نیمه عمیق جداسازی گردیده شده‌اند. این واحد در شیل روتیت‌های ریز، گدازه‌ها و توده‌های انسان نگه‌دارنده آوستیسیسن به شکل 100/100 کیوانه‌های ناهماهنگ قرار گرفته‌اند.

بخش‌های جنوب شرقی و بخش‌هایی از شمال غربی منطقه دارای پوشش آبی‌رنگی است. این نیشته‌ها به صورت تراس‌های روغن‌هایی گزارش‌های دامنه کوه‌ها، پایگاه‌های فرسایش یافته و نیشته‌های بستر آب‌های هستند.

شکل 1
نقشه تقسیمات ساختاری ایران [1] با تغییرات و موقعیت منطقه‌ای مورد بررسی، به همراه نقشه راه‌های دسترسی.
شکل 2: نقشه زمین شناسی منطقه مورد بررسی.

پیروسکن دیوریت پورفیری
این واحد در بخش‌های مرکزی و شمالی منطقه مورد بررسی دارای بیشترین رخ‌نمن است. بفت این پورفیری با 45± تا 50 درصد فنوکریست است. پلاژیوکلاز و پیروسکن فنوکریست‌ها را تشکیل می‌دهد (شکل 3-ب). میزان‌گرایانه اندازه پلاژیوکلاز 700 میکرون و گاهی به امیلی‌مر می‌رسد.

horتند پیروسکن دیوریت پورفیری
این واحد نیز رخ‌نمن نسبتاً به‌زیگی در بخش‌های غربی، مرکزی و شمالی منطقه مورد بررسی دارد. بفت این سنگ‌ها پورفیری با زمینه‌های ریز‌انه است. فنوکریست‌ها شامل پلاژیوکلاز (25± تا 30 درصد)، پیروسکن (حدود 9 درصد) و هورتند (7± تا 8 درصد) است (شکل 3-ب). دربردی به صورت رخ‌نمن‌های کوچک با بافت دائمی در منطقه وجد دارد. کانی‌های اصلی این سنگ‌ها شامل کوارتز (بین 2± تا 5 درصد)، پلاژیوکلاز (25± تا 30 درصد) و فلدسپار قلبی (2± تا 5 درصد) بوده و بیشتر و هورتند از جمله کانی‌های مافیک هستند. همچنین این نوده‌های نفوذی نیمه نفوذی در سرک آب‌های پالوسن باعث تشکیل اسکارن و ویژگی‌های سنگ‌شناسی سنگ‌های نیمه نفوذی منطقه به شرح زیرند:

* **هورتند دیوریت پورفیری**
 بیشترین حضور این واحد سنگ‌ک در بخش جنوب و مرکز منطقه مورد بررسی است. بفت این سنگ‌ها به‌طور پرورفیری با خمیرهای ریز‌انه است. فنوکریست‌ها حدود 55 درصد سنگ را تشکیل می‌دهند. زمینه آن از پلی‌ویاکلاز مقایسه‌کنی فلدسپار قلبی و کوارتز تشکیل شده است. فنوکریست‌ها شامل 40± تا 50 درصد پلاژیوکلاز، 10± تا 12 درصد هورتند و در صورت وجود، کمتر از 2 درصد پیروسکن هستند (شکل 3-الف). اینه در این سنگ‌ها قابل توجه است درگذشتنی شدید آنهاست. به طوری که پلی‌ویاکلاز پرآب‌یابی کامل به کلر آنها تبدیل شده‌اند (شکل 3-الف).

* **هورتند کوارتز دیوریت پورفیری**
 این واحد کیک دیگری از واحد‌های ردخ‌نمن یافته در بخش‌های جنوب منطقه است. بفت سنگ پورفیری با زمینه‌های شکری است. فنوکریست‌ها آن شامل 65± درصد پلاژیوکلاز و 10± تا 12 درصد هورتند است (شکل 3-ب).
کانی‌سازی آهن در منطقه‌ی مورد بررسی شده است [1615]. بافت اصلی اسکارن‌های مترولاسنتیک است. بر اساس بررسی‌های میکروسکوپی، گارنت میکروکرتاسیک کانی اسکارنی در منطقه بی‌شک است (شکل 4-الف و ب). کانی‌های دیگری که در اسکارن‌های بی‌شک مشاهده می‌شود شامل کرِنیت (کلسیت)، وژوپیت، اسکارولیت، لاوسنیت، اپیدوت، اسفن و کرِنیتند. بررسی ۵۰ نقطه صیقلی و نازک صیقلی نشان داده است که قالب مهم تشکیل شده در زون اسکارنی، مگنیت بوده که به صورت جانشینی در گارنت و در مرحله‌ی پسونده اسکارن تشکیل شده است. کانی‌سازی در این مرحله با تشکیل کانی‌های آباد با دمای بالای مثل اپیدوت و کرِنیت همراه است (شکل ۴-ب و ت). بیشترین میزان مگنیتیت حدود ۵۰ درصد است. پیریت (گاهی تا ۴۰ درصد) و کالکوپیریت (کمتر از ۱ درصد) از کانی‌های سولفاتیکی این کانُسَر هستند که پس از تشکیل مگنیتیت به وجود آمدند.

شکل ۳ تصاویر میکروسکوپی از: (الف) هورنلبند دیوبیت پورفیری؛ (ب) هورنلبند کوارتز دیوبیت پورفیری؛ (پ) پیروکسن دیوبیت پورفیری و (ت) XPL.

شکل ۴ (الف و ب) تصاویر میکروسکوپی از گارنت اسکارن‌های منطقه‌ی مورد بررسی (XPL: گارنت جانشینی مگنیتیت به جای گارنت و همراهی آن با مجموعه کانی‌های کرِنیت و اپیدوت (هر دو تصویر یک گستره را نشان می‌دهد؛ پ: تور عبوری، XPL: تور بازتابی، PPL: تور عبوری، XPL: تور بازتابی).
زئوئیسی

زئوئیسی

ویژگی‌های کلی زئوئیسی‌های سنگ‌های نفوذی-نیمه نفوذی

منطقه با تجزیه‌های شیمیایی مشخص شده است (جدول ۱).

جدول ۱. نتایج آنالیز شیمیایی مناسب و کمیاب تعادلی از نمونه‌های بهبودیابه‌های بیش از آنالیز عناصر اصلی و کمیاب توده‌های نفوذی همیافت با

<table>
<thead>
<tr>
<th>Fe Skarns[i]</th>
<th>Mean</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂<sub>2</sub> (wt%)</td>
<td>56.37</td>
<td>58.99</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.77</td>
<td>5.78</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>3.77</td>
<td>15.32</td>
</tr>
<tr>
<td>FeO</td>
<td>4.7</td>
<td>7.52</td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td>MgO</td>
<td>3.12</td>
<td>3.13</td>
</tr>
<tr>
<td>CaO</td>
<td>4.37</td>
<td>5.81</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.34</td>
<td>3.49</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.47</td>
<td>1.13</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>0.2</td>
<td>0.12</td>
</tr>
<tr>
<td>LOI</td>
<td>1.34</td>
<td>1.5</td>
</tr>
<tr>
<td>Total</td>
<td>99.4</td>
<td>99.8</td>
</tr>
<tr>
<td>ASI</td>
<td>0.85</td>
<td>0.86</td>
</tr>
<tr>
<td>Ba(ppm)</td>
<td>5.9</td>
<td>5.9</td>
</tr>
<tr>
<td>Rb</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Sr</td>
<td>28.1</td>
<td>28.2</td>
</tr>
<tr>
<td>Zr</td>
<td>15.9</td>
<td>16.1</td>
</tr>
<tr>
<td>Nb</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Co</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>La</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Ce</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Pr</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Nd</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Sm</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Eu</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Gd</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Tb</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Dy</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Ho</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Er</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Tm</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Yb</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Lu</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Y</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Cs</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Ta</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Hf</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Th</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>U</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Eu/Eu*</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>
شکل ۵ نامگذاری سنگ‌های نفوذی - نیمه نفوذی بیش از استفاده از [۱۷].

سبلیس یافته‌ی می‌شوند. به عنوان [۱۸] ایشتر سنگ‌های نفوذی وابسته به اسکارن در نموارد [۲۵] در گسترهٔ سنگ‌های نفوذی وابسته به اسکارن قرار می‌گیرند (شکل ۷). اسکارن‌های قلی و اکسائیت با نفوذی برآمیونوس در ارتباط است. کمترین شاخص اشاع از آلومین در نفوذی‌های وابسته به اسکارن‌های آهن کلسبک جزیره‌ای اقباسی تعلق دارد که کمترین واکنش را با سرب‌های قاره‌ای داشته‌اند [۲۶]. نمونه‌های نفوذی‌ی نیمه‌کش در مورد بررسی در منطقه‌ی پیشنهادی در گسترهٔ سنگ‌های نفوذی وابسته به اسکارن‌های آهن در نمونه‌های قاره‌ای داشته‌اند. نمونه‌های نفوذی در انواع اسکارن‌های [۲۴] و مواد نیمه‌کش در مورد بررسی نشان داده شده است. در این نوع اسکارن‌های قلی و مواد بنیادی با نفوذی‌های غنی از سبلیس و شیداً جدا شده و در انتها دیگر اسکارن‌های آهن با نفوذی فقیر از [۲۴] آهن با نمونه‌های مورد بررسی (علاقه مانند شکل ۶).

شکل ۶ میانگین ترکیب نفوذی همراه با انواع اسکارن‌های اسکارن [۲۴] آهن با نمونه‌های مورد بررسی (علاقه مانند شکل ۲).
شکل ۷ بررسی شاخه اشباع از آلومین در سنگ‌های نفوذی - نیمه نفوذی منطقهی مورد بررسی با استفاده از نمودار [۲۵] (علامات منند شکل ۵) و موقعیت نوده‌های نفوذی هرگونه با اسکارن‌های مختلف از [۱۸۲].

نسبت به سیلیس [۸۹.۲۸]، تمام سنگ‌های منطقه‌های مورد بررسی در گستردگی شبه قبیلی قرار گرفته‌اند.

شکل ۸ نشان دهنده‌ی برخی از ویژگی‌های زنوشیمیایی نمونه‌های مورد بررسی است. بر پایه‌ی نمودار مجموع گروه

شکل ۸ نمودارهایی از ویژگی‌های زنوشیمیایی گرانیت‌های نیمه نفوذی به به (علامت منند شکل ۵) و موقعیت نوده‌های نفوذی هرگونه با اسکارن‌های مختلف از [۱۸۲].
می‌شورند. توده‌های گروه‌های Zn و Cu می‌توانند در حواض همراه با اسکالن‌های W و Sn نسبت به سنگ‌های نفوذی همراه اسکالن‌های MgO، کمتر و K2O می‌گردد. این نتایج به دلیل وجود ممکن است بازگر کننده فراوانی تئوریک و فیزیکی زرس و SiO2 در این دسته‌بندی [18] سیستم‌ها، نمونه‌های مورد بررسی با توده‌های وابسته به اسکالن‌های آهن هم‌خویی دارند.

رابطه چشمه‌های همراه با اسکالن‌های آهن به دلیل جدایی کمتر، غیبی و کاهش در Rb/Sr و کاهش در توده‌های نفوذی همراه با اسکالن‌های مختلف برپا می‌گردد. [31] در این نمونه‌های زرس کمتر و مانند [18] Rb-Ba-Sr در توده‌های نفوذی همراه با اسکالن‌های دیگر [18] و نمونه‌های مورد بررسی (علامه مانند [

شکل 9 نمونه‌های در دسته‌بندی Rb/Sr (الف) و Rb/Sr (ب) نسبت به Rb/Sr) نشان می‌دهد.

باید ذکر کرد که با این نتایج Srb سیستم با هم‌خویی در فلزات‌های قیمتی و میکاوا
بی‌پاسخی انفعالات گرازنتی‌ها. گرازنتی‌های نوع S نسبت به نوع I حاوی
پتانسی استرس یک‌پاره هستند [34]. در صورتی که محتوای سدیم
گرازنتی‌های نوع I و S به ترتیب شامل مقادیر نسبتا بالا و پایین
است [35]. شکل 1 نمونه Na2O K2O نسبت به
چاپی گرانی‌نت‌های I و S از نتانی می‌دهد. جهانه ملاحظه
می‌شود نمونه‌های مورد بررسی در گستره گرانی‌نت‌های نوع
قرار می‌گیرند.

شکل 1 نمونه گرانی‌نت‌های نوع I و S از نتانی می‌دهد. جهانه ملاحظه
می‌شود نمونه‌های مورد بررسی در گستره گرانی‌نت‌های نوع
قرار می‌گیرند.

شکل 11 نمونه گرافیت‌های منجر به Na2O نسبت به K2O چاپی در آن محدوده گرازنت‌های I و S از یک‌پاره‌‌های جدا شده‌اند [37] (عکس مانند شکل 5).

یکی از روش‌های تنظیم گرازنت‌های I و S محتوای سدیم
نمودار عکوبانی چند عنصری به‌هنجار شده با [۴۵] برای سنگ‌های گرانیتوبیدی مورد نظر در شکل ۱۳ نشان داده شده است. سنگ‌های گرانیتوبیدی مورد بررسی تهیه Yb, Y, Ti, P, Nb و Ti از عنصر با شدت میدان بالا نظیر Yb و Ti و beau نشان می‌دهد که بانانگ‌های Ce و Th مبتنی به هاجکه Ta و زمین‌ساختی اینسته به فرورانش است. نمودار فراوانی REE به‌هنجار شده با کندربیت [۴۷] (شکل ۱۴) با اندازه سنگ‌های نادر خاکی نسبت به اندازه Eu نادر خاکی سنگین است. در این نمودار به هنجاری کم یک (Eu/Eu*) نیز مشاهده می‌شود. به‌همان‌طور که از این است که با فلزات پیک فاز مهم در بقیه Eu مانندی ذوب شده بوده ولی در‌فرآیند جدایی‌دریگر شده‌اند. (HREE) غنی شدگی نمونه‌ها از REE و کیفی شدگی آن‌ها از بانانگ میکروکسیم نفوذی من تاآلومین نوع ۱ کم‌های انسفانی حاشیه‌های قاره‌هاست که در فرآیند وابسته‌اند [۴۸].

شکل ۱۳ نمودارهای عنصر کبیاب به‌هنجار شده با [۴۰] برای سنگ‌های گرانیتوبیدی مورد نظر از [۴۱] برای سنگ‌های گرانیتوبیدی بیش (عکلام مانند شکل ۵) (الف) و مقایسه آن با N-MORB [۴۵].

شکل ۱۴ نمودار عنصر نادر خاکی به‌هنجار شده با کندربیت [۴۷] برای سنگ‌های گرانیتوبیدی بیش (عکلام مانند شکل ۵).

شده را که N-MORB [۴۵]، را که با به‌هنجار گرانیتوبیدی [۴۶] مقایسه شده است نشان می‌دهد. چنانکه ملاحظه می‌شود توده‌های نفوذی با استفاده از Ce و Co و Ce و Th هستند که نشان دهنده منشا گوشه‌ای با مقادیر می‌گردد. نیز می‌توان آن است [۴۸] نمودار فراوانی REE به‌هنجار شده با کندربیت [۴۷] (شکل ۱۴) با اندازه سنگ‌های نادر خاکی نسبت به اندازه Eu نادر خاکی سنگین است. در این نمودار به هنجاری کم یک (Eu/Eu*) نیز مشاهده می‌شود. به‌همان‌طور که از این است که با فلزات پیک فاز مهم در بقیه Eu مانندی ذوب شده بوده ولی در‌فرآیند جدایی‌دریگر شده‌اند. (HREE) غنی شدگی نمونه‌ها از REE و کیفی شدگی آن‌ها از بانانگ میکروکسیم نفوذی من تاآلومین نوع ۱ کم‌های انسفانی حاشیه‌های قاره‌هاست که در فرآیند وابسته‌اند [۴۸].
فعالیت‌های الف. از محیط‌های دیگر زمین‌ساختی به‌شمار می‌رود. بنابراین نمودارهای زمین‌ساختی مورد بررسی در گستره‌های

 الحرارتی و امراتی برای فعالیت‌های قرار گرفته می‌گردد (شکل‌های طرف). منطبقه‌های کربناکی و میزان تغییرات

ابزار و میزان این تغییرات مشخص کننده می‌باشد. در این نمودار VAG و VAG+syn-COLG موقعیت توده‌های نفوذی همراه با اسکاران‌ها [18] نیز آمده است. این نمودارهایی می‌باشد که توده‌های نفوذی در ارتباط با اسکاران در حوزه‌های مختلف میان اقیانوسی وجود نداشتند و از آن‌ها به عنوان بخشی از

روند صفحه‌های هستند. این نمودارها در این‌جا برای جدایی سنگ‌های نقطه‌ای به شکل 15 خلاصه شده‌اند.

![نمودارهای را برای جدایی سنگ‌های نقطه‌ای](image1)

![نمودارهای را برای جدایی سنگ‌های نقطه‌ای](image2)

[Downloaded from ijcm.ir on 2022-02-03]
برداشت
بر یاده ویژگی‌های سنگ‌نگاری و زئوپیمایی، سنگ‌های نفوذی - نه فنودی منطقه P بیشتر در کستره‌های کناری، نمایندگان نفوذی سه‌گانه جدید از اهک‌های پالیوسن می‌گیرند. نفوذ سنگ‌های حکیمیتی (روش پالیوسن)در زون‌های سنگ‌های قاره‌ربا و در مرحله‌ی پس‌روندی اسکالر تحلیل مثبت ایست. ویژگی‌های فیزیکی و شیمیایی، یک‌گان و یا در سنگ‌های سری مگنتیت و گرابین‌دهی‌های نوبه‌ای است. منابع سیلیس در توده‌های نفوذی ناحیه P89.5 درصد و چهار مقاومت‌ها از سنگ‌های نفوذی باسهای قاره‌رباهای 59.3 درصد است. باسئوسیه‌های سنگ‌های دهکده همکاشفان این سنگ‌های با سنگ‌های وابسته به وابسته‌های اسکالر‌های این است. این زبان با وابستگی به رشته‌های می‌باشد با ژن‌آموزی وابسته به وابسته‌های واگر را می‌باشد. به منظور برداشت معمول از خاستگاه‌ای سنگ‌های بررسی‌های ازبیزی مورد نظر می‌باشد.

مراجع

[2] افتخراز ج، مطالعات جنگ درباره تکنیکی حوضه رسوبی قلیش در تپه ایران و توجیه آن با تئوری کنترولی صحنه ای، گزارش شماره 2، سازمان زمین‌شناسی و اکتشافات معدنی کشور، 1352(1351).

[5] بربریان، فرگشت زئوپیمایی رشته کوه‌های ایران زمین. هفتمین گردش‌های علم زمین، سازمان زمین شناسی کشور 1367(1364).

[43] Erkül S.T., Sözびlìr R. H., Erkül F., T Helvae C., Ersoy Y., Sümer O., "Geochemistry of I-type granitoids in the Karaborun Peninsula, West Turkey: Evidence for Triassic continental arc