بررسی هیمیافتی کانی‌های زئولیتی و کلینزوزیتی در سنگ‌های دگرگون: مثالی از
ایبدوت-آمفیبولیت‌های جنوب سلسله- شمال غرب ایران

معصومه آهنگی‌پور، محسن مؤذن

دانشگاه تربیت مدرس، دانشکده علوم طبیعی، گروه زمین‌شناسی

چکیده: زئولیت و کلینزوزیت به صورت مهم‌ترین در ابدوت-آمفیبولیت‌های منطقه سلسله حضور دارند. در این سنگ‌ها، زئولیتی در مقایسه با کلینزوزیت در فراوانی بیشتری برخوردار است. ترکیب این زئولیت کانی‌ها، با کبدی‌گر متفاوت بوده و درایاف متفاوتی از این نمایه پیستاسیت-هست. این مقدار در زئولیتی کم بوده و در حدود 60/0-64/0 است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌ها هست. این مقدار در کلینزوزیت کم بوده و در حدود 64/0% است. مقدار عضو نهایی پیستاسیت-برای کلینزوزیت در حدود 30/0% است. این سنگ‌حا
روش کار

اساس کار در این پژوهش بر مبنای بررسی‌های سنگنگاری نمونه‌های ایدیوپتی منطقه‌ای لیاس و تشخیص کلپیت‌های سنگ‌پوش و کلیپیت‌زنی‌های از یکدیگر، با توجه به میزان و نرمال شویی‌های خاموشی، استوار است. با مشخص شدن کلپیت‌های سنگ‌پوش و کلیپیت‌زنی‌های از یکدیگر، GFZ آلگهای نقشه‌ای از کلپیت‌های باد در مسیرهای آنها جمع کرده‌اند و در این قرارداد با اشکال شیمیایی هر یک از کلپیت‌های گروه و نقشه‌های کلپیت‌های باد شده را برای رسم‌های طبیعی کلپیت‌های گروه ایدیوپتی گزارش کردند.

پیمایش منطقه‌ای و نقشه‌سازی

منطقه‌ای مورد بررسی در جنوب شرقی سلامه در استان آذربایجان غربی بین مختصات جغرافیایی ۴۲° ۴۴ تا ۴۴° ۰۰ طول شرقی و ۵۵° ۳۷ تا ۵۵° ۰۷ عرض شمالی واقع شده است (شکل ۱). در این منطقه دو نوع از سنگ‌های گروه کلپیت‌زی و کلپیت‌زی کلپیت‌زی در یک سطح کلپیتی نیش باشد. به طوریکه هر دو نوع دو نظیر تبدیلی از نظر ترمودینامیکی در یک منطقه‌ای وجود داشته باشند.

در این مقاله بررسی‌های همبستگی و همبستگی کانل‌های سنگ‌پوش و کلیپیت‌زنی‌های ایدیوپتی، منطقه‌ای لیاس و نقشه‌سازی‌های منطقه‌ای لیاس برداشت و سعی شده است تا خلاصه‌ای از بررسی‌های پیشین موجود در این منطقه را نیز ارائه دهد.

شکل ۱ (الف): منطقه‌ای مورد بررسی در نقشه‌های ایران. (ب): نقشه‌های سنگنگاری منطقه‌ای مورد بررسی، اقتباس از [۱۷].

[Downloaded from ijcm.ir on 2022-04-26]
سنگ‌ها سیار متغیر است.

ایبیدوت‌آمفیبولیت‌ها یکی از مهم‌ترین گروه سنگ‌های دیگر و سنگ‌های جنوب سلسله‌مادر به همراه آمفیبول‌های بخش وسیعی از منطقه‌ی مورد بررسی را به خود اختصاص داده‌اند. این سنگ‌ها در موقعیتی و دسته‌بندی رنگ سنگ‌های تربه‌بری‌ده و کتی‌های آمفیبول و پلاژیک‌کرای وجود دارند. به راحتی قابل تشخیص آن‌ها انتشار کتی‌های موجود در این جمله مشاهده شده است (شکل 2 ب).

![شکل 2: کتی‌های گروه ایبیدوت-آمفیبولیت‌های منطقه‌ی سلسله‌مادر.

شکل ۲، کتی‌های گروه ایبیدوت-آمفیبولیت‌های منطقه‌ی سلسله‌مادر (در نوار (الف) و (ب)) کتی‌های کشیده و منشوری زولیتریت و کلینوزولیتریت در متن سنگ‌ها با حاشیه‌ای از مواد نارنگی، انداره‌های منشا و کتی‌های زولیتریت و کلینوزولیتریت و نیز مشاهده می‌شود. این ایبیدوت‌های منطقه‌ی سلسله‌مادر نازک می‌باشند. کلینوزولیتریت در ایبیدوت-آمفیبولیت‌های جهان نازک و سوزن‌های رز رزروزینیت و کلینوزولیتریت ایبیدوت در کتی‌های آمفیبول، Czo در منطقه‌ی مجمه‌های کتی‌های Hbl در ایبیدوت‌های منطقه‌ی سلسله‌مادر، Zo در جهان نازک و سوزن‌های رز رزروزینیت و کلینوزولیتریت ایبیدوت در کتی‌های آمفیبول، Czo در منطقه‌ی مجمه‌های کتی‌های Hbl در ایبیدوت‌های منطقه‌ی سلسله‌مادر، Zo در جهان نازک و سوزن‌های Rz رز.
جدول 1. داده‌های حاصل از آنالیز نسبت‌های کانی‌های زولیتیت و کلینزولیتیت و مجموعه‌کانی‌های ریز موجود در اطراف کانی‌های گروه اپیدوت

<table>
<thead>
<tr>
<th>جدول 1.</th>
<th>داده‌های حاصل از آنالیز نسبت‌های کانی‌های زولیتیت و کلینزولیتیت و مجموعه‌کانی‌های ریز موجود در اطراف کانی‌های گروه اپیدوت</th>
<th>ZnO</th>
<th>ZnO</th>
<th>ZnO</th>
<th>ZnO</th>
<th>ZnO</th>
<th>ZnO</th>
</tr>
</thead>
<tbody>
<tr>
<td>slm1-11</td>
<td>slm1-12</td>
<td>slm1-13</td>
<td>slm1-32</td>
<td>slm1-33</td>
<td>slm1-31</td>
<td>slm1-30</td>
<td></td>
</tr>
<tr>
<td>Czo</td>
<td>Czo</td>
<td>Czo</td>
<td>Czo</td>
<td>Czo</td>
<td>Czo</td>
<td>Czo</td>
<td></td>
</tr>
<tr>
<td>SiO₂</td>
<td>38.55</td>
<td>38.27</td>
<td>38.27</td>
<td>38.55</td>
<td>38.55</td>
<td>38.55</td>
<td></td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.00</td>
<td>0.01</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td>8.54</td>
<td>8.61</td>
<td>9.06</td>
<td>8.54</td>
<td>8.54</td>
<td>8.54</td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td>0.01</td>
<td>0.03</td>
<td>0.03</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>MgO</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td>22.10</td>
<td>22.07</td>
<td>22.07</td>
<td>22.10</td>
<td>22.10</td>
<td>22.10</td>
<td></td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>K₂O</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>97.15</td>
<td>98.47</td>
<td>98.47</td>
<td>97.15</td>
<td>97.15</td>
<td>97.15</td>
<td></td>
</tr>
</tbody>
</table>

Formula (12.5 O)

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Si</td>
<td>3.03</td>
<td>3.01</td>
<td>3.02</td>
<td>3.03</td>
<td>3.04</td>
<td>3.02</td>
</tr>
<tr>
<td>Ti</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Al</td>
<td>2.94</td>
<td>2.95</td>
<td>2.95</td>
<td>2.94</td>
<td>2.94</td>
<td>2.94</td>
</tr>
<tr>
<td>Cr</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Fe³⁺</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
<td>0.01</td>
</tr>
<tr>
<td>Mn</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Mg</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Ca</td>
<td>3.00</td>
<td>3.01</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
<td>3.00</td>
</tr>
<tr>
<td>Na</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>K</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>Total</td>
<td>8.00</td>
<td>8.01</td>
<td>8.01</td>
<td>8.00</td>
<td>8.01</td>
<td>8.01</td>
</tr>
</tbody>
</table>

Mole fractions

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>XCa (A)</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
<td>0.89</td>
</tr>
<tr>
<td>XAl (M3)</td>
<td>0.34</td>
<td>0.35</td>
<td>0.35</td>
<td>0.34</td>
<td>0.34</td>
<td>0.34</td>
</tr>
<tr>
<td>XFe3 (M3)</td>
<td>0.50</td>
<td>0.51</td>
<td>0.51</td>
<td>0.50</td>
<td>0.50</td>
<td>0.50</td>
</tr>
</tbody>
</table>
بررسی‌های آزمایشگاهی از این امر که کاتی‌های گروه ای‌پیدوت پیش‌روند به این سنجگی تشکیل شده و بخشی از مجموعه کاتی‌های ای‌پیدوت به‌حساب می‌آیند.

علاوه بر کاتی‌های گروه ای‌پیدوت موجود در منطقه ای‌پیدوت، به‌صورت نهایی در کاتی‌های آمفیوبیت (شکل ۲ نیز مشاهده شده است.

بررسی‌های سنجش‌گری انجام شده رواج نمونه‌های ای‌پیدوت– آمفیوبیتیت به‌دست آمده از منطقه‌ی جنوب سلامس، بیانگر این واقعیت است که به لحاظ امکان‌پذیری میزان کاتی‌های زوئنتیت و کلیزونزیت در یک یا دو گروه می‌باشد. این بررسی‌ها نشان می‌دهد که بیشتر کاتی‌های گروه ای‌پیدوت موجود در منطقه‌ی نسبت‌دار ترکیب زوئنتیت با زاویه‌های خاموشی می‌باشد. بنگ‌دونوکسکی این کاتی‌ها در اثر نور قطعیت، سبز، نبوده شده‌است.

روابط بین کاتی‌های گروه‌های ای‌پیدوت، زوئنتیت و کلیزونزیت با ساختار و تشکیل آن‌ها حین گروه‌های پیش‌روند، از جمله سبب، يک‌دریفته‌انگی در منطقه‌ی گروه‌های ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعامل مستقیم با دیگر کاتی‌های گروه ای‌پیدوت در منطقه‌ی سلامس، کاتی‌های گروه ای‌پیدوت در تعال
در ایجاد تغییرات ترکیبی کانی‌های گروه اپیدوت موجود در
ایپیدوت-امفیبولیت‌های منطقه سلامس نیز مؤثر است (شکل 3). زولوئز ویتیت و کلینوزیت موجود در سنگ‌های امفیبولیت-امفیتیتی منطقه سلامس دارای ترکیب‌های متفاوتی نسبت به
پیداگرند. مقدار اکسیژنی در Fe₂O₃ و Al₂O₃ در
کانی زولوئزیت (۲۹.۴-۲۹.۱) بیشتر از کلینوزیت
و Fe₂O₃ بوده و در مقابل میزان اکسید Fe۳+ آن (۷.۲-۷.۴) در مقایسه با میزان این اکسید در کانی
کلینوزیت (۷.۵-۹.۸) کمتر است.

مقادیر
(XFe = (Fe³⁺ + Fe²⁺)/(Al + Fe³⁺ + Fe²⁺) XFe

شکل ۳ درجه‌بندی کانی‌های گروه اپیدوت در سیستم
Ca₃Al₂Si₃O₁₂(OH)-Ca₂Al₂FeSi₃O₁₂(OH)
زاولوئزیت با ساختار رستگوشه شامل دو
نوع زولوئزیت قلیز از این (زولوئزیت ن و زولوئزیت غنی از آهن) (زولوئزیت ۰). کلینوزیت ویتیت با ساختار تکمیل (و علامت توری مثبت). در این شکل
موقتیت پیستاسیت، نشان داده شده است. برگرفته از [۴].

شکل ۴ نمودار Al نسبت به Fe۳+ همگونی منفی این دو عنصر بیانگر وقوع جانشینی Fe۳+ به جای Al است. در این نمودار مقادیر متفاوت
Fe³⁺ در ترکیب این کانی‌ها قابل مشاهده می‌باشد. زولوئزیت: ∙ کلینوزیتیتیت است.
در بررسی همایشی کالیهای زئونیتیت و کلیپنوزیتیت در سنجش‌های... موری ی بر همیشیتی زئونیتیت و کلیپنوزیتیت

گرچه همیشیتی زئونیتیت و کلیپنوزیتیت از دیگری به خوبی شناخته شده [۳۴] و نیز سبایی از زمین‌شناسی را به خود جلب کرده، ولی ناکترن بررسی‌های جدید زانیات انجام نشده و همایش تبدیل این دو کانی به یکدیگر پایه‌ای علت همیشیتی آن‌ها در یک به نسبی غیر خوبی نشان‌دهنده است.

بررسی همیشیتی زئونیتیت و کلیپنوزیتیت و نیز تبدیل این دو کانی به یکدیگر معمولاً بر پایه نتایج حاصل از دو نوع بررسی استوار است: (۱) بررسی ری، نمونه‌های طبیعی به دست آمده از سنجش‌های غیر گردگان موجود در طبیعت (برای مثال [۲۹-۳۰]؛ و (۲) بررسی نمونه‌های ساخته شده در آزمایشگاه در شرایط غیر طبیعی (فشار و دما) متفاوت و کنترلی شده [۲۰، ۱۵، ۹۰].

نتایج حاصل از این بررسی‌ها بسیار متنوع بوده و بر پایه این بررسی‌ها، ناکترن نظاره متفاوتی در خصوص همیشیتی و یا همیشیتی این دو کانی ارائه شده است.

و اکنون بررسی تبدیل زئونیتیت به کلیپنوزیتیت به صورت زیر بیان می‌شود (وکد ۱): Ca۲Al۲Si۳O۱۲ (OH) ↔ Ca۲Al۲Si۳O۱۲ (OH)
Clinozoisite (Zoisite)

تعیین همایشیتی با یا همیشیتی دو کانی زئونیتیت و کلیپنوزیتیت، نیازمند محاسبه در پاترها متفاوت هستند. همیشیت‌های در واکنش (۱) است. بررسی‌های مختلف برای

رمونوپاتیکی در واکنش (۱) است. بررسی‌های مختلف برای

محاسبه ΔG (انرژی آزاد گیپس) و واکنش (۱) ۱۵، ۱۰۰، ۲۰۰، ۳۰۰، ۴۰۰ و فعالیت کالیهای زئونیتیت و کلیپنوزیتیت (۳۱) قابل دیدگی-\(\Delta H\) و \(\Delta V\) های بررسی‌پاترها متفاوت هستند. ترکیب و گیپس برای کالیهای زئونیتیت و کلیپنوزیتیت در مقابل نسبت‌های متفاوتی از X_F نشان داده شده است. با توجه به این نمودار، می‌توان حضور کالیهای ZO/CZO را با توجه به مقادیر انتزاع آزاد گیپس و ترکیب این کانی‌ها توضیح داد. در واقع اهمیت ترکیب شیمایی در سنگ‌های دگرگون در این نمودار بیشتر آشکار می‌شود.

بحث

حضور زئونیتیت و کلیپنوزیتیت در ایدیت- گیپس‌های منطقه‌ای سلسله می‌تواند به عنوان راهنما به عنوان تبدیل را یافته است.
برداشت
کانی‌های گروه اپیدوت (ایپیدوت، زوئیت و کلینوژوئیت) از جمله کانی‌های شاخص در اپیدوت‌امفیبولیت‌های منطقه‌ای سلماس بوده و جزئی از مجموعه کانی‌های اوج دگرگونی در این منطقه به شمار می‌روند. ترکیب شیمیایی کانی‌های زوئیت و کلینوژوئیت با یکدیگر متناوب بوده و مقدار X_{Fe} در این کانی‌ها با توجه به ترکیب آنها متفاوت است. X_{Fe} در کانی زوئیت (55 +/- 10 درصد) در مقایسه با این مقدار در کانی کلینوژوئیت ($33/3 +/- 18/7$ کمتر) است. نتیجه اینکه

مهم‌ترین جانشینی مؤثر در ایجاد تغییرات ترکیب کانی‌ها شده در کانی‌های زوئیت و کلینوژوئیت است. Fe-Al توجه به حضور هم‌زمان کانی‌های زوئیت و کلینوژوئیت در سنگ‌های درگیر و در نظر گرفتن ترکیب شیمیایی این کانی‌ها، می‌توان به شرایط دما و فشار تبیلور آنها بپردازد. بر مبنای بررسی‌های دما-خشارسنجی که بر اساس میزان فازی و واکنش تبدیل زوئیت به کلینوژوئیت و مقدار عضو انتهایی پیستاسیت در روز کانی‌ها انجام گرفته است، این کانی‌ها در دمای 500 ± 20 درجه سانتی‌گراد و فشار
[8] Holland TJB., “Stability relations of clino-
and orthozoisite”. In: Henderson CMB (ed)
Progress in experimental petrology. The Natural
Environment Research Council. Publication Series
[9] Fehr K.T., Heuss-Aßbichler S.,
“Intracrystalline equilibria and immiscibility
along the join clinozoisite– epidote: an
experimental and 57Fe Mossbauer study”, N Jahrb
[10] Heuss-Aßbichler S., Fehr K.T.,
“Intercrystalline exchange of Al and Fe3+ between
grossular–andradite and clinozoisite– epidote solid
100.
rocks in part of the Klamath Mountains, Northern
California”, American Mineralogist 50 (1965)
953-977.
minerals, chlorite, and plagioclase in metamorphic
rocks, northern Sierra Nevada, California”,
gap in a metamorphic profile through the Penninic
series of the Tauern Window, Austria”, Contributions to Mineralogy and Petrology, 57
(1976) 99-117.
[15] Brunsmann A., Franz G., Heinrich W.,
“Experimental investigation of zoisite–clinozoisite
phase equilibria in the system CaO–Fe2O3–
paths from pelitic schists and greenstones from the
[17] Jenkins D.M., Newton R.C., Goldsmith J.R.,
“Fe-free clinozoisite stability relative to zoisite”.
[18] Holdaway M.J., “Thermal stability of Al-Fe
epidote as a function of fO2 and Fe content”, Contributions to Mineralogy and Petrology, 37
[19] Kapp P., Manning C.E., and Tropper P.,
"Phase-equilibrium constraints on titanite and
rutile activities in mafic epidote amphibolites and
geochemistry using titanite–rutile equilibria",