کانی شناسی، زمین شیمی و سن پرتونسیج دایکهای مافیک موجود در مجموعه دگرگون دربر، بیارجمند (جنوب شرق شاهرود)

زری بلاگی ۳، محمود صادقیان ۱، حیب الله قاسمی ۱، محمد محتل ۲، مینگو ۳

۱- دانشکده علوم زمین، دانشگاه صنعتی شهید رجایی
۲- دانشکده علوم زمین، دانشگاه تربیت مدرس
۳- مؤسسه زمین شناسی و زلوفیریک، آکادمی علوم جنگ و دانشگاه تربیت و توسعه (شمال غرب)، چنین

چکیده: مجموعه دگرگون دربر در جنوب شرقی شاهروند متشکل از انواع شیست‌ها، آمفیبولیت‌ها و گنایس‌های با مناظر میگماتیک به سبب واکنش نوبوتروزونیک (برکنری، زوراسیک، ترشوری) قطع شده است. دایکهای پایه به زوراسیک، مجموعه روی‌کردن و سنگ‌های رسوبی تخریبی دگرگون شده تریاس بالایی-زوراسیک زیرین (معادل با ساند شمشک) را قطع گردیده و در آهنگهای ماسه‌ای زوراسیک میایی و آهنگهای کرتاسه زیرین (ئوتوکنیم) ادامه دارند. امپیلیات‌های موجود در این دایکها در گروه کلسیمی قرار داشته و از نوع اندبی هستند. فیلوگرافی بررسی بالایِ آبی‌پنیتِ موجود در امپیلیات، یک فناوری باعث گوردگی ۴ تا ۵ کیلوبار رای تعادل نهایی این کانی است که با اعمال U-Pb روی آباینت‌های موجود در این دایکها دربر دربر می‌شود. سال‌سنگی به روش زمین‌شناسی کامل‌سازی بررسی و در انتخاب با کشت‌های پوسته‌ای این دایکها مولکولاری و اثرات گذشته را دارد. این دایکها در یک محیط زمین‌شناسی کششی پشت کمان و در ارتباط با کشت‌های پوسته‌ای قرار دارند. این دایکها دارای میزان آتوماسیون بالا هستند. این دایکها به‌دنبال limits}**m.balaghi@shahroodut.ac.ir**
بخش دیکه‌ها، از آن لحاظ می‌توانیم دیکه‌های آلیک و نیتری‌های گزارش شده‌اند. در زون بزرگ، دیکه‌های آلیک و نیتری‌های نگاره‌ای مشابهی، زیربخش شمشک را از نظر گرانش نیز در مجموعه‌های گزرگون نشان می‌دهند. به علاوه، در منطقه‌های مرزی، نیتروژن در مجموعه‌های گزرگون نشان می‌دهند.

روش بررسی پیش از بررسی دقیق صحرایی، نمایش روابط واحدهای سنگی و تشخیص نسل‌های مختلف نیتروژنی و به -

جدول 1: نتایج تجزیه شیمی سکا نمودارهای آلیک منطقه‌ای دلیل

<table>
<thead>
<tr>
<th>Region</th>
<th>Multidean Mountain and Allelindine Mountain</th>
<th>Sefid Sang area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>D4, D5, B4-6, B3-1, B19-3, B104-4, M304-1, M304-2, M316-3, M309-1, M308-5, M304-4, M376-1</td>
<td></td>
</tr>
<tr>
<td>Major elements (wt %)</td>
<td>SiO₂ 71.9, Al₂O₃ 14.6, Fe₂O₃ 6.5, MgO 3.1, CaO 1.5</td>
<td></td>
</tr>
<tr>
<td>Trace elements (ppm)</td>
<td>Ba 56, Ce 30, Gd 18, Ho 8, Er 10, Tb 7, Dy 26, Pr 24, Sm 4</td>
<td></td>
</tr>
<tr>
<td>Rare earth elements (ppm)</td>
<td>La 47, Ce 9, Pr 10, Nd 12, Sm 14, Eu 6, Gd 7, Tb 7, Dy 10, Ho 8, Er 8, Tm 10, Yb 10, Lu 12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Multidean Mountain and Allelindine Mountain</th>
<th>Sefid Sang area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>D4, D5, B4-6, B3-1, B19-3, B104-4, M304-1, M304-2, M316-3, M309-1, M308-5, M304-4, M376-1</td>
<td></td>
</tr>
<tr>
<td>Major elements (wt %)</td>
<td>SiO₂ 71.9, Al₂O₃ 14.6, Fe₂O₃ 6.5, MgO 3.1, CaO 1.5</td>
<td></td>
</tr>
<tr>
<td>Trace elements (ppm)</td>
<td>Ba 56, Ce 30, Gd 18, Ho 8, Er 10, Tb 7, Dy 26, Pr 24, Sm 4</td>
<td></td>
</tr>
<tr>
<td>Rare earth elements (ppm)</td>
<td>La 47, Ce 9, Pr 10, Nd 12, Sm 14, Eu 6, Gd 7, Tb 7, Dy 10, Ho 8, Er 8, Tm 10, Yb 10, Lu 12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Multidean Mountain and Allelindine Mountain</th>
<th>Sefid Sang area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>D4, D5, B4-6, B3-1, B19-3, B104-4, M304-1, M304-2, M316-3, M309-1, M308-5, M304-4, M376-1</td>
<td></td>
</tr>
<tr>
<td>Major elements (wt %)</td>
<td>SiO₂ 71.9, Al₂O₃ 14.6, Fe₂O₃ 6.5, MgO 3.1, CaO 1.5</td>
<td></td>
</tr>
<tr>
<td>Trace elements (ppm)</td>
<td>Ba 56, Ce 30, Gd 18, Ho 8, Er 10, Tb 7, Dy 26, Pr 24, Sm 4</td>
<td></td>
</tr>
<tr>
<td>Rare earth elements (ppm)</td>
<td>La 47, Ce 9, Pr 10, Nd 12, Sm 14, Eu 6, Gd 7, Tb 7, Dy 10, Ho 8, Er 8, Tm 10, Yb 10, Lu 12</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
<th>Multidean Mountain and Allelindine Mountain</th>
<th>Sefid Sang area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sample</td>
<td>D4, D5, B4-6, B3-1, B19-3, B104-4, M304-1, M304-2, M316-3, M309-1, M308-5, M304-4, M376-1</td>
<td></td>
</tr>
<tr>
<td>Major elements (wt %)</td>
<td>SiO₂ 71.9, Al₂O₃ 14.6, Fe₂O₃ 6.5, MgO 3.1, CaO 1.5</td>
<td></td>
</tr>
<tr>
<td>Trace elements (ppm)</td>
<td>Ba 56, Ce 30, Gd 18, Ho 8, Er 10, Tb 7, Dy 26, Pr 24, Sm 4</td>
<td></td>
</tr>
<tr>
<td>Rare earth elements (ppm)</td>
<td>La 47, Ce 9, Pr 10, Nd 12, Sm 14, Eu 6, Gd 7, Tb 7, Dy 10, Ho 8, Er 8, Tm 10, Yb 10, Lu 12</td>
<td></td>
</tr>
</tbody>
</table>
زمینشناسی

بررسی‌های صحرایی نشان می‌دهد که سنگهای درگوگان این مجموعه را ترکیب‌های سنگی مختلف نظیر متابایلات، متابایلات، سنگ‌های میکاکالیسنا و سنگ‌های کانیسی، متابایلات (یازده‌سیاهک، مرمر دولومیتی) و آمفیبولیت با ساختارهای میلیئی تشکیل می‌دهند. بخش‌های متابایلت‌ها دارای مناظر میکاکالیسنا بوده و در شرایط خاصی امکان‌پذیر می‌باشد. با رویاب‌های زیرکینه موجود در سنگهای درگوگان و گراین‌های منطقه و مناطق هم‌جوار [۱۶]، باره زمانی ۵۰۴ میلیون سال (واخر تیتروپوزیتیک-اولین کامپرس) را برای این مجموعه نشان داده است. داکسیه‌های سیاه‌پوش به تعداد فراوان، سنگهای درگوگان و نیز لوگنگرایی‌های آنانکتیک را قطع کرده‌اند (شکل ۲-الف).

شکل ۱ نتیجه‌ای ایران و موادی مربوط به پروآن و پروآن‌های زمینشناسی منطقه گوسفند که به توصیف ماهورهای و بررسی‌های صحرایی دوره‌های تهیه شده است.
شکل ۲-الف: نمایی از رخنمون صحرائی دایک‌های مافیک در مجموعه‌ی درگزنی دلبر (کوه کلاته علاءالدین). ب- نمایی از دایک مافیک فلزی‌کننده‌ی گنبدی در مقطعی که به‌گویارگی این سنگ‌ها را فلز گرداند. ب- تصویر نشان میدهد که گسترش بورفوریلی ساختمانی در بخش‌های مرکزی را توده‌ها و دایک‌های مافیک مقطعه را می‌سازد. ت- نمایی از حضور قطعات بسیاری از گنبدی شده و نشتی‌های در لالای دایک‌های مافیک که نشان می‌دهد که این سنگ‌ها در اطراف دایک‌های مافیک در کنگلوماری و یا زورسیپس تا جایی که در پلان فیزیکی و گنبدی در شهری که قاعده‌ی زورسیپس در منطقه‌ی میانی و شرقی در اطراف قطعات گپیشین و گنبدی در کنگلوماری (منطقه‌ی میانی).

راستای کلی این دایک‌ها در نقاط مختلف متغیراند، ولی بیشتر در راستای شمال‌شرقی-جنوب غربی هستند. ضخامت آن‌ها از چند سانتی‌متر تا چند متر (۴ تا ۵ متر) متفاوت است. این سنگ‌ها علاوه بر دایک‌ها به شکل بسیار زیاد استوک و توده‌های کوچک و غیره به شکل‌ها سبب تهیه مشاهده می‌شوند. در برخی از آن‌ها اختلاف اندازه بولروها با حاشیه با حومه دایک قابل مشاهده است. به گونه‌ای که بخش‌هایی از حاشیه‌ای، دام ریز و حالت احتمال آن‌ها در نیاک و دایک‌های مرکزی کاملاً دشته دانه و بافت بیرون‌رسیدن دانش آوردن می‌دهند (شکل ۲-ب).

برخی از دایک‌ها قبیل تیندیر (پرکامبریان) و به‌وسیله‌ی لوانسیپس زیرین با طیف ترکیبی متنوع‌تر و نواحی ناشناخته و حساس سنگ درگزنی با نابینایی استوک‌های روزی مجموعه‌ی آذرین- درگزنی پرکامبریان قرار دادن در قاعده‌ی دیپ‌سیسی رسوبی زورسیپس زیرین، در مناطق بند هزارچه و میانی،
مهجین مرجان و دو کفهای از نوع آلکوتیونیا نیز در این سنگ‌ها یافت می‌شود (شکل ۳-ب). بر اساس شواهد چینه-‌شنختمی، این سنگ‌ها دارای بناهای سنی اولیه تا زوراسیک زیرین هستند. تیولی کنگلورا، شیل و ماسه سنگ در مناطق میانی و بند هزارچه را می‌توان معادل سازند شمشک در برز و ایران مرکزی در نظر گرفت. سازند شمشک حاوی فسیله‌های درشت گرده و عفونت‌های است که بارزی زمانی توراسیک میانی تا قبل از سهاده دردست. این سنگ‌ها یافت می‌شود از آن است که به دلب فاز که‌های سیمنس پیشین در اولیه تربس، منطقه دستخوش بازلد و فرسایش شدید شده و دنیاله‌ها می‌توانند شکم را در حوضه-‌های کششی فروغ‌ناده محیط برای گذاشت. این دنیاله‌های تربسی به‌دست (وزوراسیک میانی- بالابی) در حد رخسارتی شیب بزرگ در این سنگ‌ها می‌تواند. شکم هست. جزئی درون شگفت‌آور و در در inev. فاقد و درمعنای (پن‌هزارچه و جرگ کوه ملدود) با سنگ‌های اهکی، زاویه‌ای و همه ماسه‌ای فسیله‌ای گذشته در حوضه-‌های اولیه و مرجان به سبب وزوراسیک میانی یاد شده. این واکه‌های میانی، لایه‌های سنگ‌های دیتیتاس ، Lyco- podium sporites، Gleicheniidites senoni cus، Spaghnum sporites antiquas porites.

شکل ۳- Converts of توانش شیل و ماسه سنگ‌های وزوراسیک زیرین (منطقه‌های میانی). ب- تصویری از فسیله‌های آمونیت و دوکه‌های یافت شده در شیل‌های وزوراسیک زیرین (منطقه‌های میانی).
شیمی آمفیبول‌ها

آمفیبول‌های موجود در دایک‌های مافیک مورد بررسی در رده‌ی [۲۳۲] در کرده کلسیک قرار گرفتند و از نوع آدیبیتی است. (شکل۵) آمفیبول‌ها یکی از مناسب‌ترین کانی‌ها در دما- فشار سنگ‌های آدیبیتی هستند که در فشارهای ۱۳۲-۱۰۰۰ کبار و گستره‌ی وسیعی از دما از °C-270 در نتیجه فشار سنگ‌های استفاده شده. نتایج فشارسنگ بر اساس میزان Al³⁺ محلول در آمفیبول با چهار طبقه‌بندی مختلف (جدول ۲۳) نشان می‌دهد که میانگین فشار جداگانه‌ای این توده‌ها در گستره‌ی ۳،۸-۵،۴ کبار عمق نرمال ۱۴ تا ۱۵ کیلومتری بوده که در کرده‌ی C۵ به دنبال این کناره‌ی دایک‌های مافیک منطقه است که غالباً به صورت سوزن‌های بلند مشاهده می‌شودن. این کانی به صورت نفوذی در پلاژیوکلاز حضور دارد. ابتدای و کلیه از جمله کانی‌های ناپایه موجود در این سنگ‌ها هستند (شکل ۴) با توجه به ترکیب کانی- سناسی و ویژگی‌های بافتی، می‌توان این سنگ‌ها را میکروگردوک- تا گاپو نامید.

شکل ۴: تصویری از حضور پلاژیوکلاز و اوزیت در گروه‌های با فاکت دانه‌ای پلاژیوکلاز. اوزیت: ب- تصویری از حضور بوری‌های پلاژیوکلاز در دایک‌های میکروگرابوی با فاکت گلوموروفیزی.

شکل ۵: نمودار Na/Si نسبت به Si Mg(Mg + Fe) نسبت به Fe(3Fe + Mg) Na-Ca. جای قرار دادن که نشان می‌دهد از گروه‌های به حال کلسیک نوع آدیبیتی هستند. - نمودار که معادل آمفیبول‌ها را نشان می‌دهد.
نمونه‌های آمیقیول توده‌های گابرویی منطقه دلبر.

<table>
<thead>
<tr>
<th>Sample number</th>
<th>B170-1-01</th>
<th>B170-1-02</th>
<th>B170-1-03</th>
<th>B170-1-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>43.5</td>
<td>42.1</td>
<td>46.1</td>
<td>55.8</td>
</tr>
<tr>
<td>TiO₂</td>
<td>1.2</td>
<td>0.9</td>
<td>1.1</td>
<td>0.9</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>10.4</td>
<td>8.9</td>
<td>9.0</td>
<td>7.9</td>
</tr>
<tr>
<td>FeO</td>
<td>8.8</td>
<td>7.4</td>
<td>8.0</td>
<td>7.8</td>
</tr>
<tr>
<td>MnO</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>0.7</td>
</tr>
<tr>
<td>MgO</td>
<td>11.2</td>
<td>10.8</td>
<td>10.2</td>
<td>12.1</td>
</tr>
<tr>
<td>CaO</td>
<td>11.2</td>
<td>11.2</td>
<td>11.6</td>
<td>11.6</td>
</tr>
<tr>
<td>Na₂O</td>
<td>2.3</td>
<td>2.3</td>
<td>2.4</td>
<td>2.5</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.5</td>
<td>0.4</td>
<td>0.4</td>
<td>0.5</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>H₂O*</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.7</td>
</tr>
<tr>
<td>Total</td>
<td>43.1</td>
<td>43.5</td>
<td>43.2</td>
<td>43.2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amphibole group</th>
<th>B170-1-01</th>
<th>B170-1-02</th>
<th>B170-1-03</th>
<th>B170-1-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Na</td>
<td>1.3</td>
<td>1.0</td>
<td>1.1</td>
<td>1.2</td>
</tr>
<tr>
<td>Mg</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Fe</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Mn</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Ti</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Al</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Cr</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Amphibole names</th>
<th>edenite</th>
<th>hornblende</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>edenite</td>
<td>hornblende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P (kbars)</th>
<th>Hammarstrom & Zen 86</th>
<th>Hollister et al. 87</th>
<th>Johnson & Rutherford 89</th>
<th>Schmidt 92</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5.57</td>
<td>5.88</td>
<td>5.46</td>
<td>5.79</td>
</tr>
<tr>
<td></td>
<td>4.17</td>
<td>4.19</td>
<td>4.24</td>
<td>4.34</td>
</tr>
<tr>
<td></td>
<td>3.94</td>
<td>4.08</td>
<td>3.22</td>
<td>4.03</td>
</tr>
<tr>
<td></td>
<td>3.94</td>
<td>4.08</td>
<td>3.22</td>
<td>4.03</td>
</tr>
</tbody>
</table>

* زمین شیمی نمونه‌های مافیک مورد بررسی در نمودار ردیابیدی سنگ‌های درونی [26] در گستره ترکیبی گالوپ و منگنزگالوپ و اسلد از میان‌های قلبی برای واقعیت شکل ۶-الف، نشان‌دهنده فلزات و الیافی آن است. نتایج نشان‌دهنده سری‌های آلی سنگ‌های مافیک مورد بررسی استفاده شده است. نشان‌دهنده روش بررسی نمونه‌های گوردان و نمودار تغییرات Zr/TiO₂ نشان‌دهنده به مجموعه‌های سنگ‌های مافیک مورد بررسی استفاده شده است. نشان‌دهنده روش بررسی نمونه‌های مورد بررسی در میان‌های قلبی از گستره‌های قلبی‌های شیمی مورد بررسی قرار می‌گیرند [شکل ۶-ب].

* زمین شیمی نمونه‌های مافیک مورد بررسی در نمودار ردیابیدی سنگ‌های درونی [26] در گستره ترکیبی گالوپ و منگنزگالوپ و اسلد از میان‌های قلبی برای واقعیت شکل ۶-الف، نشان‌دهنده فلزات و الیافی آن است. نتایج نشان‌دهنده سری‌های آلی سنگ‌های مافیک مورد بررسی استفاده شده است. نشان‌دهنده روش بررسی نمونه‌های گوردان و نمودار تغییرات Zr/TiO₂ نشان‌دهنده به مجموعه‌های سنگ‌های مافیک مورد بررسی استفاده شده است. نشان‌دهنده روش بررسی نمونه‌های مورد بررسی در میان‌های قلبی از گستره‌های قلبی‌های شیمی مورد بررسی قرار می‌گیرند [شکل ۶-ب].
اساس این نمودار (شکل 8-ب)، عمک بروز دوب پهلو و تشکیل ماگماتی سازنده سینهگاه مافیک منطقه‌ای دلبر در حدود 200 تا 300 کیلومتر تعیین می‌شود که با گسترشی اسببیل زئولوژی هم‌خوانی دارد. در نمودارهای مختلف تعیین

شکل ۶-نمودار Na₂O+K₂O نسبت به SiO₂ [26] که موقعیت نمونه‌ها مورد بررسی روی آن نشان داده شده است. ب- نمودار تغییرات نسبت Zr/TiO₂ نسبت به Nb/Yb [29] و موقعیت نمونه‌های مورد بررسی بر روی آن. ب- نمودار تغییرات نسبت Zr/TiO₂ نسبت به Nb/Yb [29].

شکل ۷-نمودار عنکبوتی به‌نیاز به نسبت به REE کندیت [20]. ب- نمودار عنکبوتی به‌نیاز به نسبت به REE- کرای نمونه‌های کاربردی مورد بررسی پ- نمودار تغییرات Zr/TiO₂ نسبت به Fe₂O₃ [33] برای نمونه‌های مورد بررسی. ت- نمودار نسبت Ce/Sm نسبت به Sm/Yb [34].

(Sun & Mc NMORB)
سال‌سنگی به میانگین پشت کامپائي‌های همکاری مورد بررسی داده. به اعتقاد ویلمنس و همکاران [140] که ناشی از فرمانش پیشروندی سنگ‌های ایپی ایقتیوسی نتوانسته بود زیر سنگ‌های قاره‌ای ایران مرکزی، منجر به بار شدن خفیف‌های کافیتی پشت‌کمان در بخش‌های داخلی ایران مرکزی و قشر شده است (شکل 10). مگاکاپی‌های حاصل از ذوب بخش‌های گوشته لیتوسیز زیبای قاره‌ای از طریق فضاهای کشی ایجاد شده در این حوض‌ها در راستای سلسله‌های عاشی به تراسه‌های بالایی بوته سوده‌کرده و به صورت دایک‌های نماده‌های کوچک مقياس جایگزین شده است. کنطبق‌ها قبلی اثره شد. مگاکاپی سازندی دایک‌های منطقه از ذوب بخشی 30 درصدی یک سنت خاس‌های گوشته استیل بریتوئیتی معمولاً در ابعاد 80 تا 100 کیلومتری ریشه گرفته و در خلال صعود و یاگزنی در پیشنهاد احتمالی اندکی آلودگی یافته است. سازندی شمشک و سنگ‌های مافیک موجود در آن، در حوضه‌ی کشی کافیتی پشت کم‌آبی ایجاد شده‌که در میان کوه‌های سیبیمین بیشین، شکل شده‌که در انتهای نورسکوگاداری در مرز تراس میانی-بالایی با تغییر رسوب‌های سکوی کرمانی پرتوپاسی (سازندی شنی و الکا) مربوط به مرحله کافیت‌زایی به رسوب‌های سلیسیسی تخریبی قاره‌ای تریاس‌های زوراسیک میانی (گروه شمشک) نشان داده می‌شود. این

شکل 8 - نمودار Ce/Y (La/Sm)N سنتی به نسبت (Sm/Yb)N، مقایسه به‌پژوهش شده سنت به کتکریت [131]. ب- نمودار تغییرات Ce/Y در مقابل Ce/Y [134] (جهت تعیین عمق رخداد ذوب بخشی مخلوط سنت) نمودارهای تغییرات Ce/Y و La/Nb نسبت به Y [35] (ب) و Ti/1000 زر [37] (د) برای تعیین محلی کم‌آبی نمونه‌های مافیک مورد بررسی.

سلام‌سنگی به موشک U-Pb آپاتیت

آپاتیت کانی را در سنگ‌های مافیک مورد بررسی است که اطلاعات مهمی در خصوص زمان تشکیل این سنگ‌های ازلان می‌دهد. به طور کلی آپاتیت در سنگ‌های سال‌سنگی دمای پایین به کار می‌روید. زیرا دمای بسته شدن سنگ آپاتیت پایین است (450-550 درجه سانتی‌گراد) [38]. این تغییر در U-Pb-Th سن دقيق به موشک Pb نمونه‌های جاری به دلیل روانه‌پایی U از این دست رفتند رادیوتیزیک و اهمیت تصحیح سرب عادی سیس‌دار شور این سن دقيق به موشک U-Pb-Pb معمولاً به دلیل نسبت بالایی سرب عادی به سرب رادیوتیزیک، محدود است و نابه تصحیح سرب عادی دار. داده‌های تعیین نسبت‌های LA-ICPMS این سن دقيق به موشک U-Pb-Pb معمولاً به دلیل نسبت بالایی سرب عادی به سرب رادیوتیزیک، محدود است و نابه تصحیح سرب عادی دار. داده‌های تعیین نسبت‌های LA-ICPMS این سن دقيق به موشک U-Pb-Pb معمولاً به دلیل نسبت بالایی سرب عادی به سرب رادیوتیزیک، محدود است و نابه تصحیح سرب عادی دار. داده‌های تعیین نسبت‌های LA-ICPMS این سن دقيق به موشک U-Pb-Pb معمولاً به دلیل نسبت بالایی سرب عادی به سرب رادیوتیزیک، محدود است و نابه تصحیح سرب عادی دار. داده‌های تعیین نسبت‌های LA-ICPMS این سن دقيق به موشک U-Pb-Pb معمولاً به دلیل نسبت بالایی سرب عادی به سرب رادیوتیزیک، محدود است و نابه تصحیح سرب عادی دار. داده‌های تعیین نسبت‌های LA-ICPMS این سن دقيق به موشک U-Pb-Pb معمولاً به دلیل نسبت بالایی سرب عادی به سرب رادیوتیزیک، محدود است و نابه تصحیح سرب عادی دار. داده‌های تعیین نسبت‌های LA-ICPMS این سن دقيق به موشک U-Pb-Pb معمولاً به دلیل نسبت بالایی سرب عادی به سرب رادیوتیزیک، محدود است و نابه تصحیح سرب عادی دار. داده‌های تعیین نسبت‌های LA-ICPMS این سن دقيق به موشک U-Pb-Pb معمولاً به دلیل نسبت بالایی سرب عادی به سرب رادیوتیزیک، محدود است و نابه تصحیح سرب عادی دار. داده‌های تعیین نسبت‌های LA-ICPMS این سن دقيق به موشک U-Pb-Pb معمولاً به دلیل نسبت بالایی سرب عادی به سرب رادیوتیزیک، محدود است و نابه تصحیح سرب عادی دار. داده‌های تعیین نسبت‌های LA-ICPMS این سن دقيق به موشک U-Pb-Pb معمولاً به دلیل نسبت بالایی سرب عادی به سرب رادیوتیزیک، محدود است و نابه تصحیح سرب عادی دار. داده‌های تعیین نسبت‌های LA-ICPMS این سن دقيق به موشک U-Pb-Pb معمولاً به دلیل نسبت بالایی سرب عادی به سرب رادیوتیزیک، محدود است و نابه تصحیح سرب عادی دار. داده‌های تعیین نسبت‌های LA-ICPMS
روش اکتیویس تونوسیس به‌زیر خرید فقره ایران مرکزی و فورانش دانته و پوستنه قرار داده شده‌است که این فقره تحت تأثیر زمین‌ساختن تراکم‌های این جورا است. ماکیام‌های مافیک مادر در راستای این شکستگی‌ها و ضایعاتی که فاقد مصرف عمده‌ای به‌رونه‌پا سایه دارند، این جورا را ایجاد کرده‌اند. تعداد 10 مدل نسبی ساخته‌کننده این جوراها و نمایندگان ارائه شده برای چگونگی نشکل این جوراها و ماکیام‌ها وابسته به در دسترسی می‌باشند. روش‌های رصد شکل‌بندی می‌باشد. تاکنون 60 نمونه از این جورا در بزرگ‌ترین تحقیقات جغرافیایی ایران ایفا شده است. (مثلاً، برز خواف‌شستگی 60 m/Ma (تک‌تکی، پرخ‌پیوسته) و تغییرات سریع ضخامت، نوپای کاشش در پی نیایش شناختی از این جورا که در صورتی که این جورا به‌رونه‌پا است، دچار تغییرات سریع ضخامت نخواهد شد.)

<table>
<thead>
<tr>
<th>Sample</th>
<th>Pb206/207</th>
<th>Pb207/206</th>
<th>Pb207/206</th>
<th>Pb206/208</th>
<th>Pb206/208</th>
<th>Pb207/208</th>
<th>Pb207/208</th>
<th>Pb207/208</th>
<th>Pb207/208</th>
</tr>
</thead>
<tbody>
<tr>
<td>B34-04</td>
<td>1.919</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
</tr>
<tr>
<td>B34-01</td>
<td>1.919</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
</tr>
<tr>
<td>B34-19</td>
<td>1.919</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
</tr>
<tr>
<td>B34-18</td>
<td>1.919</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
</tr>
<tr>
<td>B34-11</td>
<td>1.919</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
</tr>
<tr>
<td>B34-06</td>
<td>1.919</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
</tr>
<tr>
<td>B34-14</td>
<td>1.919</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
</tr>
<tr>
<td>B34-03</td>
<td>1.919</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
</tr>
<tr>
<td>B34-02</td>
<td>1.919</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
</tr>
<tr>
<td>B34-17</td>
<td>1.919</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
</tr>
<tr>
<td>B34-22</td>
<td>1.919</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
<td>0.75</td>
<td>0.55</td>
<td>0.375</td>
</tr>
</tbody>
</table>

جدول 3: نتایج حاصل از تعبیر نسبی‌های ایزوپایتوس و سه‌های بدست آمده به روش U-Pb بر روی آپیت بوجود در نمونه‌های ماکیام‌های منطقه دلیل
برداشت
سن پتروسنجی گروهی از دایک‌های مافیک واقع در یادی به روش U-Pb پروتوسنجی (روی آپاتیت، بر اساس
354±152 Ma (پروتوسنجی‌پیمانی - فوقایی) به دست آمده که ابعاد صخیح آنها با سنجش‌های میزبان کاملاً همخوانی دارد. مدل‌های سازنده این
فرمانش رو به شمال سنگ کره اقباعی نتوانی به زیر آن
ایجاد شد است.
قدیرداتی
این پژوهش بخشی از تأثیر به دست آمده از طرح پژوهشی به
شماره 877963 سند مطالعه پژوهشگران معاونت
علی و فارابی ریاست محترم جمهوری است. لذا برخود از
می‌تابد که از جراحی‌های مادی و جنونی مسئولین محرمان
صدقو و نیز از پیشنهاد ارزشی حوزه معاونت پژوهشی و
قانونی دانشگاه صنعتی شهید ساسانی کریم.
مراجع
[1] جمشیدی در، مطابقت‌ها مافیک مایک فاکه تاریک
شمسک در سنگ پارس قومی، پایان نامه کارشناسی ارشد.
دانشگاه علم زمین، دانشگاه صنعتی شهید ساسانی
1386 (1386).
[2] قاسمی حیب، جمشیدی در، زمین‌شناسی و رژیم‌های
سنگ‌های پاپیل کرانگ در قاعده دانشگاه صنعتی و
بزرگ شرقی، مجله پتروپالسی و کانی‌شناسی ایران، سال نوزدهم،
شماره 4، 1371م، 1372م، 1373م.
[3] شیبی، م. پتروپالسی و سازگاری جایزه‌ای
نیتریت-کراتونتیک شیرکور (جوقز غرب بدر)، رسانه
دانشگاه صنعتی تهران (1384).
[4] قاسمی حیب، در، پتروپالسی و زمین‌شناسی سنگ‌های
آدرن نویسی منطقه چیتلا-یاسینه، جنوب شرقی کشور.
پایان نامه کارشناسی ارشد، دانشگاه علم دانشگاه تهران،
1372 (1372).
[5] لی و زاده محمدی، قاسمی حیب، آدرن نویسی توده
گرانیکتیک بولین، جنوب شرقی، سنگ‌های بلوری-راست
فصلنامه علم زمین، پایان نامه کارشناسی ارشد، شماره 7
1383 (1383).
[6] بریسی، م. پتروپالسی جایزه‌ای توده کراتونتیک گل
زرد با استفاده از روش انتی‌پپتید خودتیزی معمولی
ام‌اس‌ام‌سی (1987). پایان نامه کارشناسی ارشد، دانشگاه علم زمین

