تشکیل میاندارهای مونتاژیت و زنوتیم در گلر آپاتیت‌های کانسار فسفات
اسفوردری

صدیقه تقی‌پور، علی کتمندان

دانشکده ریمن شناسی، بردیس علوم، دانشگاه تهران

(دریافت مقاله: ۹۱/۱۸/۲۳۲۵، نسخه نهایی: ۹۲/۱/۲۵)

چکیده: آپاتیت اصلی ترین کانی فسفاتی موجود در کانسار اسفوردری است که به‌صورت بلورهای کاملاً شکل در (۲۰۲-۲۰۱) هم‌مرشد با مگنتینت و همانیت، رگه‌های و رگه‌های رخ‌مونون یافته است. بررسی‌های نگار گدازی حاکی از حضور دو نوع آپاتیت اولیه و نانویی در این کانسار است. در تصاویر BSE نتیجه‌ی در این آپاتیت‌های اولیه، بشقای سالم بلور به رنگ روسن و بشقای دگرسان شده آن تبریده می‌شوند. ترکیب اولیه آپاتیت گلر آپاتیت (منطقه روش) بوته که در اثر دگرتهای بطور بیشتری به هیدروفیل-فلور آپاتیت (منطقه تبرید) تبدیل شده است. منطقه روش آپاتیت از نظر Y+LREE و Na2O SiO2 CI یک نهایی شده مستند می‌باشد. مینیاباره‌های مونتاژیت و زنوتیم درون آپاتیت به دو گروه اولیه (۱۰۰۰-۳۰۰۰ µm) و سایر (۲۰۰-۵ µm) قابل قسمت‌یابی که این نوع گرفتار در یک نهایی ثابت است. ترکیب آپاتیت به‌طور کلی در ۲۵۰۰-۱۵۰۰ را برای Y+HREE و Na2O SiO2 CI یک نهایی شده نیست. با استفاده از داماسن مونتاژیت-زنوتیم، دمای حضور ۲۵۰۰-۱۵۰۰ را برای آپاتیت دگرتهای نشان می‌دهد که این به دگرتهای در شرایط رخ‌سار شیب‌سازی دیده‌دار‌دارد.

واژه‌های کلیدی: کانسار فسفات اسفوردری، گلر آپاتیت، دگرتهای آپاتیت، مونتاژیت، زنوتیم

مقدمه

کانسار فسفات اسفوردری واقع در منطقه بافق و بیکی از کانسارهای آپاتیت-مگنتینت نوع کیرونا [1] است که از زیر شاخه‌های مهم کانسارهای اکسيد آهن-سیل-خلاویو می‌باشد. مگنتینت-آپاتیت موجود در کانسارهای نوع کیرونا بلافاصله بعد از جابجایی ماده‌سازند آپاتیت-مگنتینت در دامنه دمایی ۶۰۰-۴۰۰ درجه سانتی‌گراد تهیه می‌شود. زوئ مونتاژیت-زنوتیم در شرایط درکگونی، آذرین و دگرتهای پایدارند [4] و ترکیب شیمیایی آنها به شیمی کل سیستم، ضریب جذبی عناصر نادری ناپیوسته بین آنها، قرار دار و دمای سیستم برای دارد [5]. بررسی رفتار ان‌عناصر در طول دگرتهای آپاتیت می‌تواند اطلاعات مفیدی Kananian@khayam.ut.ac.ir

*Koosha Moshref, Soltan-Refai: ۹۱/۲۹۹۴۰۱۶۴۴۳۲۹۲۳۲، پست الکترونیکی.
در خصوص چگونگی تشکیل میان‌پاره‌های مونوژئی و زنوئیم و نیز شرایط شاری سازندگی آن‌ها در احتمال بر این است که با بررسی شیمی‌ای آپاریتی، میانپاره‌های مونوژئی و زنوئیم بررسی رفتار نادر خاکی در این کانالی، اطلاعاتی درخصوص ترکیب، شکل گیری و شرایط حاکم بر شاهد عامل دگرشناسی در کانسار فسفات اسپرمیا به دست آورده و نتایج حاصل از این پژوهش را با بررسی‌های انجم شده دیگر در نمونه‌های طبیعی و مخصوصاً دنبال مقایسه کنیم.

روش بررسی

پس از بررسی‌های مصرفی و کتابخانه‌ای ۱۲ نمونه از رخنمون‌های مختلف آپاریتی عمدان استروفورماتی چرخه آوری شدند. تعداد ۱۲ مقطع نازک صافی و ۴ گرنز ماند مورد بررسی‌های ریز پردازشی قرار گرفتند. بررسی‌های سنجش‌گرایی به (BH-2) میکروسکوب الیپمیوس رفته (GFZ, Germany) در جهت زرد و BSE (Electron Backscattered) کانال آپاریتی و میان‌پاره‌های مونوژئی و زنوئیم موجود در آن انجام شد. به این منظور از یک ریز پردازشی مدل SX-50 استفاده شد.

شکل ۱ نقشه‌ی زمین‌شناسی پیرامون استروفورماتی و جایگاه عمدان استروفورماتی روی آن (۱۱).
تشکیل میانبارهای موناتزیت و زنوتیم مناسوماتیک در داخل ناحیه آبیاتینی و اهمیت دار شدن سخت سیان در آن

عکس شکل 2: منطقه عرضی ناحیه آبیاتینی و اهمیت دار شدن سخت سیان در آن

در بخش‌های نزدیک به روشین تشکیل شده‌اند (شکل 4، و 7، ج). مناطق نزدیک به آبیاتین حاوی میانبارهای کاتی‌های عنصر نادرخاکی است که حدود ۸۵٪ آن‌ها از موناتزیت (شکل ۴، پ) و ۱۵٪ از زنوتیم (شکل ۴، پ) تشکیل شده است. میانبارهای موناتزیت و زنوتیم به‌طور مداوم در طول کامل‌بیش‌سنتیس (سال منطقه) و در اکثر موارد از اینجا آبیاتین‌ها کاتی‌های شکلاتی و برزگردپوش (۱۰۰-۳۰۰ میکرومتر) حاوی هستند. در حالی که از آتشفشانی بی‌بسماری شکل دارند (۵-۲ میکرومتر) (شکل ۴، ف، س، ت، ج) در منطقه نزدیک به آبیاتین، شکستگی‌های میکرو و نانو حتی موجود در آبیاتین و در مرز ساقه انجام رشد افتاده‌اند. میکرو و نانو حتی در منطقه‌های آبیاتین به وفور مشاهده می‌شوند (شکل ۴، پ، روابط بارانی‌نیکی برای کاتی‌های فسفاتی و کانسنتر اینم استفوردی در جدول ۱ خلاصه شده است. مگنتیت، هماتیت، کلریت، تالک، انکیولیت، کلسیت و کوارتز از دیگر کاتی‌های حسابشده‌اند که در اطراف آبیاتین‌ها و در داخل دری و شکافها و مناطق واکنشی این کاتی‌ها مشاهده می‌شوند.

کاتی‌شناسی و سنگ‌نگاری کاتی‌های فسفاتی

آبیاتین اصلی ترین کاتی‌های فسفاتی موجود در کاسار استفوردی است. این کاتی به‌صورت اولیه بیان و نموده در نمونه‌های مشاهده می‌شود. انواع اولیه از هم‌بودن شکل دار تا نیمه شکل دار و معمولاً بزرگتر از ۵۰ میکرومتر می‌باشد. انواع اولیه حاوی میان‌بارهای کاتی‌های عنصر نادرخاکی بوده و معمولاً به کربنات درگیر رسانده‌اند (شکل ۴، ف، ب، ج). میان‌بارهای کاتی‌های عنصر نادر خاکی، غالباً شامل موناتزیت و زنوتیم هستند و معمولاً در راستای محور c آبیاتین کشیده شده‌اند. انواع نان‌سنتیس در طول زمان نازک‌تر و معمولاً با کاتی‌های تخاکری‌ری کوارتز، کلسیت، تالک و کلریت یافته می‌شوند.

[Downloaded from ijcm.ir on 2022-01-14]
جدول ۱ روابط پارازنتیک کانه‌های موجود در کاسار فسفات اسفوردی.

<table>
<thead>
<tr>
<th>کانه‌ها</th>
<th>نام</th>
</tr>
</thead>
<tbody>
<tr>
<td>کانه‌ی اول</td>
<td>کانه‌ی دوم</td>
</tr>
<tr>
<td>آنتنیت‌های اولیه</td>
<td>آنتنیت‌های اولیه</td>
</tr>
<tr>
<td>مونتیزیت</td>
<td>مونتیزیت</td>
</tr>
<tr>
<td>ذرات اولیه</td>
<td>ذرات اولیه</td>
</tr>
<tr>
<td>مرکب</td>
<td>مرکب</td>
</tr>
<tr>
<td>کوارتز</td>
<td>کوارتز</td>
</tr>
</tbody>
</table>

سند تاکنونی در حاضر آنتنیت‌های اولیه رخ دیده است.

شکل ۳ عکس‌برداری مونتزیت و زنونیت در راستای محور ۶ آنتنیت‌های اولیه شکل شده است. ب، ت کلیت نانویه بدنیال کرینیاتی

شکل ۴ تصاویر BSE از کانسک فسفات اسفوردی. اگر- ترکیب اکتیونیت و کلریت در کان آنتنیتهای اولیه. تشکیل یک مونتیزیت اولیه کامل،

درختی دار و اواهری آهن (به صورت نقطه سفید) درون آنتنیتهای اولیه. ب- تشکیل هژمونی مکتیت-آنتنیت، رخداد تیغ‌های اسمینتیت درون مکتیت و مونتیزیت‌های اولیه (شکل دار)، و گرماب درون آنتنیت (نقاط سفید و رزدانه)، تصاویر BSE از میان‌بارهای مونتیزیت (ب) و زنگیم (ت) موجود در آنتنیت‌های کاسار اسفوردی. ت- دانگی کلی از یک آنتنیت اولیه که مناطق تیره، روش و میکرو و نانو حفره‌ها به وضوح در آن قابل مشاهده اند. ج مونتیزیت‌های بی‌شکل و گرمایی در پخش‌های تیره این آنتنیت تشکیل شده است.
شیمی کانی‌های فسفاتی

آیانیت

ماتنگی نتایج آنالیزهای ریزپردازش آیانیت‌های منطقه‌ای

ایرانیان در جدول 2 خلاصه شده است. آیانیت‌های مورث بررسی بیشتر از نوع هیدروکسی فلوآریانیت با مقدار کمی کلر هستند (شکل 5). از لحاظ زمین‌شناسی مناطق آنیت تهیه گردید.

جدول ۲ نتایج آنالیزهای ریزپردازش بر روی بخش‌های رشته (تعداد 180 آیانیت‌هایی اسپورتی)

<table>
<thead>
<tr>
<th>No.</th>
<th>P2O5</th>
<th>SiO2</th>
<th>Na2O</th>
<th>SO3</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>FeO</th>
<th>CaO</th>
<th>MgO</th>
<th>K2O</th>
<th>TiO2</th>
<th>MnO</th>
<th>ZnO</th>
<th>Cr2O3</th>
<th>NiO</th>
<th>CuO</th>
<th>Y2O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79.1</td>
<td>21.0</td>
<td>6.5</td>
<td>0.4</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>78.6</td>
<td>21.4</td>
<td>6.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>78.1</td>
<td>21.9</td>
<td>6.2</td>
<td>0.4</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>77.6</td>
<td>22.5</td>
<td>6.5</td>
<td>0.4</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>

جدول ۳ دیگر عناصر

<table>
<thead>
<tr>
<th>No.</th>
<th>P2O5</th>
<th>SiO2</th>
<th>Na2O</th>
<th>SO3</th>
<th>Al2O3</th>
<th>Fe2O3</th>
<th>FeO</th>
<th>CaO</th>
<th>MgO</th>
<th>K2O</th>
<th>TiO2</th>
<th>MnO</th>
<th>ZnO</th>
<th>Cr2O3</th>
<th>NiO</th>
<th>CuO</th>
<th>Y2O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>79.1</td>
<td>21.0</td>
<td>6.5</td>
<td>0.4</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>2</td>
<td>78.6</td>
<td>21.4</td>
<td>6.8</td>
<td>0.4</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>78.1</td>
<td>21.9</td>
<td>6.2</td>
<td>0.4</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>4</td>
<td>77.6</td>
<td>22.5</td>
<td>6.5</td>
<td>0.4</td>
<td>0.8</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
</tr>
</tbody>
</table>
ادامه جدول 2
نتایج آنالیزهای ریزپتراداری بر روی بخش‌های نیترید (تعداد = 20 آبیاتیه‌های استندارد)

<table>
<thead>
<tr>
<th>No.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>P2O5</td>
<td>42.55</td>
<td>43.20</td>
<td>42.55</td>
<td>42.15</td>
</tr>
<tr>
<td>SO2</td>
<td>0.00</td>
</tr>
<tr>
<td>SiO2</td>
<td>0.32</td>
</tr>
<tr>
<td>Y2O3</td>
<td>0.77</td>
</tr>
<tr>
<td>La2O3</td>
<td>0.57</td>
</tr>
<tr>
<td>Ce2O3</td>
<td>0.15</td>
</tr>
<tr>
<td>Nd2O3</td>
<td>0.14</td>
</tr>
<tr>
<td>Pr2O3</td>
<td>0.11</td>
</tr>
<tr>
<td>Cr2O3</td>
<td>0.33</td>
</tr>
<tr>
<td>MnO</td>
<td>0.04</td>
</tr>
<tr>
<td>FeO</td>
<td>0.11</td>
</tr>
<tr>
<td>SrO</td>
<td>0.02</td>
</tr>
<tr>
<td>NaO</td>
<td>0.01</td>
</tr>
<tr>
<td>F</td>
<td>1.81</td>
</tr>
<tr>
<td>Cl</td>
<td>0.67</td>
</tr>
<tr>
<td>OH</td>
<td>0.14</td>
</tr>
<tr>
<td>O-F-Cl</td>
<td>0.17</td>
</tr>
<tr>
<td>total</td>
<td>100.8</td>
</tr>
</tbody>
</table>

| Y+REE | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 | 0.33 |

شکل 5
نتایج حاصل از آنالیز ریزپتراداری آبیاتیه‌های منطقه استندارد روی نمدادر سه تابی

آبیاتیه‌های مذکور پیشرو از نوع گرماگر از (فلور) آبیاتی هستند.
جدول ۳ میانگین نتایج آلاینده‌های ریزپداسی میانگرهای زنوریت (تعداد ۲۰) موجود در آتیپی‌های اسکوئری.

<table>
<thead>
<tr>
<th>No.</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
<th>۱۱</th>
<th>۱۲</th>
<th>۱۳</th>
<th>۱۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na₂O</td>
<td>۳۴</td>
<td>۳۱</td>
<td>۳۲</td>
<td>۳۰</td>
<td>۳۱</td>
<td>۳۲</td>
<td>۳۳</td>
<td>۳۴</td>
<td>۳۵</td>
<td>۳۶</td>
<td>۳۷</td>
<td>۳۸</td>
<td>۳۹</td>
<td>۴۰</td>
</tr>
<tr>
<td>FeO</td>
<td>۱۵</td>
<td>۱۶</td>
<td>۱۷</td>
<td>۱۸</td>
<td>۱۹</td>
<td>۲۰</td>
<td>۲۱</td>
<td>۲۲</td>
<td>۲۳</td>
<td>۲۴</td>
<td>۲۵</td>
<td>۲۶</td>
<td>۲۷</td>
<td>۲۸</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>۲۲</td>
<td>۲۳</td>
<td>۲۴</td>
<td>۲۵</td>
<td>۲۶</td>
<td>۲۷</td>
<td>۲۸</td>
<td>۲۹</td>
<td>۳۰</td>
<td>۳۱</td>
<td>۳۲</td>
<td>۳۳</td>
<td>۳۴</td>
<td>۳۵</td>
</tr>
<tr>
<td>CaO</td>
<td>۱</td>
</tr>
<tr>
<td>SiO₂</td>
<td>۲۵</td>
</tr>
<tr>
<td>La₂O₃</td>
<td>۱</td>
</tr>
<tr>
<td>CeO₂</td>
<td>۲</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>۲</td>
</tr>
<tr>
<td>ThO₂</td>
<td>۲</td>
</tr>
<tr>
<td>Ga₂O₃</td>
<td>۲</td>
</tr>
<tr>
<td>Nd₂O₃</td>
<td>۲</td>
</tr>
<tr>
<td>Dy₂O₃</td>
<td>۲</td>
</tr>
<tr>
<td>Ho₂O₃</td>
<td>۲</td>
</tr>
<tr>
<td>Er₂O₃</td>
<td>۲</td>
</tr>
<tr>
<td>Total</td>
<td>۲۰۰</td>
</tr>
</tbody>
</table>

جدول-۲ میانگین نتایج آلاینده‌های میکروپورپ انجام شده بر روی میانگرهای موجود در آتیپی‌های کالسار اسکوئری در حوزه ۳ خلاصه شده است. همچنین میانگین مورد انتزاع از Al₂O₃, CeO₂, P₂O₅ و غنی هستند. میزان اکسیدهای LREE و غنی‌هستند.
| No. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| P2O5| 29.98| 29.94| 29.84| 29.94| 29.94| 29.84| 29.94| 29.84| 29.94| 29.84| 29.94| 29.84| 29.94| 29.84| 29.94| 29.84|
| CaO | 7.91 | 7.91 | 7.91 | 7.91 | 7.91 | 7.91 | 7.91 | 7.91 | 7.91 | 7.91 | 7.91 | 7.91 | 7.91 | 7.91 | 7.91 | 7.91 |
| SiO2 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 | 0.19 |
| UO2 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Y2O3 | 5.57 | 5.57 | 5.57 | 5.57 | 5.57 | 5.57 | 5.57 | 5.57 | 5.57 | 5.57 | 5.57 | 5.57 | 5.57 | 5.57 | 5.57 | 5.57 |
| PbO | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| Ce2O3 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 | 0.15 |
| Pr2O3 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 | 0.45 |
| ThO2 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
| Nd2O3 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 | 0.65 |
| Dy2O3 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 | 0.70 |
| Sm2O3 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 | 0.93 |
| Lu2O3 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 | 1.01 |
| Yb2O3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| Tb2O3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| Ho2O3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
| Er2O3 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 |
عناصر محسوب شده و در عین حال جابجاهی برای رشد میاندارهای موادیت و زنیت در ساختار آپاتیت فراهم می‌کند. NaO, SiO2, Cl, Y+LREE مناطق تبرد آپاتیت از لحاظ نسبت به مناطق رشن تیپ شده. مشاهده یافته در پژوهشگران دیگر در نمونه‌های طیبیعی [14-16] و منسوب به گزارش کردانی. به‌عنوان یکی از لحاظ Y+LREE, Na, Si, Cl و Ca+2, Na++, (Y+REE)+3=2Ca+2, Na2O, SiO2, Cl, Yلیمین‌‌های موجود در آپاتیت‌های منطقه‌ای اسفرودی در جدول ۳ خلاصه شده است. این ابزار در مقایسه با HREE در اثر زنیت‌سازی Er2O3, Tb2O3, Ho2O3, Yb2O3, (3,56) SiO2, (2,79) و (82,58) Sm2O3 می‌باشد.

دانش‌مند زنیت-آپاتیت

شکل ۶

بحث

سنگ میزانی کانسیر اسفرودی از سنگ‌های آتش‌نشانی فلسفی نظیر رولیت تغوف غلیظی غنی با سنگرال سنگچیدن تشکیل می‌شود [15]. حضور و تربیت در های نداشته با کمیت از ۳/ وزی ۴/ و این نشان می‌دهد که موادیت و زنیت مورد بررسی خاص‌تر می‌گردد. آپاتیت‌های گرمایی دارد [14-16].

به طور کلی دانشمندی‌های انجام شده روی سنگ میزانی کانسیریهای مگنتیت-آپاتیت و IOCG چندمین دارای برتری تازه نگار می‌باشد. در حد میاندارهای را برای تشکیل آپاتیت‌های انجام شده روی کالی موادیت-زنیتی می‌تواند در بخش‌های پیش‌نشان کرد. آپاتیت‌های اولیه اسفرودی در دامنه تشکیل آپاتیت‌های اولیه روندها (بخش‌های رونده) کانسیر اسفرودی نشان می‌دهد که این آپاتیت‌ها از نظر کل‌آپاتیت نمایندگان که در اثر دگرگردانی به هیدروکسی گل‌آپاتیت (بخش‌های رونده) تبدیل شده‌اند. هالو و همکاران [16] به صورت تجربی نشان داده‌اند که این تبدیل کل‌آپاتیت به گل‌آپاتیت و کاهش حجم ناشی از منیجری و نانو جریان در بخش‌های واکنش آپاتیت به‌وجود می‌آید که مسائل خاصی برای عبر شه شبه کننده‌کننده و جابجایی.
بردaran:
تَرکیب آپاتیت (I) در کانسنگ çaپتاهای اسفوردی از نوع کلرآپاتیت است. که از لحاظ عناصر نادر خاکی و به ویژه سریم غنی است. ($Y+\text{LREE})_2\text{O}_3$ = 1.52). کلرآپاتیت در حضور

این مقدار به هیدروکسیل فلورآپاتیت تبدیل شده و از طرف دیگر H_2O به نیکلیت کلر آپاتیت. نسبت به Na, Si, Cl منطقه واکنش آپاتیت از پدیده سبب تحريك عناصر نادر خاکی و پیدايش میانبایه مونازیت و زنوتیم با خاسگاه گرمایی (در دمای زیر 300 درجه)
Textural and geochemical discrimination between deposits of the Bafq district, Central Iran: apatite

قد در کلر آپاتیت بوده است.

این پژوهش بخشی از پایان نامه دکتری نویسنده اول است.

نویسنده‌گان بر خود لازم می‌دانند که از مطالعات محترم پژوهشی دانشگاه نهان به سبب حمایت از این طرح تقدیر و تشکر به عمل آورند. همچنین از دکتر دیتر رده و دکتر دانیل هارلو به خاطر آلی‌پژوهی ریتزبرارشی و نهایی تصاویر BSE تشكیل نمايند.

مراجع

[3] تابع ف.م. بررسی‌های زئولوژی و رادیواژئوستیس برای تعیین خاصیت‌های آپاتیت در دخترای ایران و آپاتیت منطقه‌ای معدنی بایات، مجله بلوچستانی و کانی شناسی ایران 3 (1369) 1289-1380.

