1. [1] Shabanian N., Davoudian A. R., Dong Y., Liu X., “U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites”, Sanandaj-Sirjan zone of western Iran. Precambrian Research, 306 (2018)41-60. [
DOI:10.1016/j.precamres.2017.12.037.]
2. [2] Ghanei ardakanei J., “Chemical mineralogy of the western Ardakan granitoid mass (Central Iran)”, Iranian Journal of Crystallography and Mineralogy,32 (2024) pp. 338-325.
3. [3] Haj Molaali A., Ghomashi A., Afsharian A.M., Hadadian M., “Geology map 1/100000 of Khezrabad”, Geological Survey and Mineral Exploration of Iran (1996).
4. [4] Khosro tharani Kh., Vaziri Moghadam h., “Stratigraphy of the Lower Cretaceous in the western and southwestern areas of Yazd”, Journal of Geology, 7 (1985) pp. 36-45.
5. [5] Droop G. T. R., “A general equation Fe3+ concentration in ferromagnesian silicates and oxygen from microprobe analysis using stoichiometric criteria”, Mineralogical Magazine 51 (1987) pp. 431-435.
6. [6] Esawi E. K., “AMPH-CLASS: An excel spreadsheet for the classification and nomenclature of amphibole based on the 1997 recommendations of the International Mineralogical Association”, Computers Geosciences 30 (2004) pp. 753-760.
7. [7] Leake B. E., Woolley A. R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch H. J., Krivovichev V. G., Linthout K., Laird J., Mandarino J. A., Maresch W. V., Nickel E. H., Rock N. M. S., Schumacher J. C., Smith D. C., Stephenson N. C. N., Ungaretti L., Whittaker E. J. W., Youzhi G., “Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names”, Eur. J. Mineral. 9 (1997) pp. 623–651.
8. [8] Leake B.E., Woolley A. R., Birch W. D., Burke E. A. J., Ferraris G., Grice J.D., Hawthorne F.C., Kisch H. J., Krivovichev V. G., Schumacher J. C., Stephenson N. C. N., Whittaker E. J. W., “Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s amphibole nomenclature”, American Mineralogist, 89, pp. 883–887.
9. [9] Stein E., Dietl E., “Hornblende thermobarometry of granitoids of Central Odenwald (Germany) and their implication for the geotectonic development of the Odenwald”, Mineralogy and Petrology, 72, 185-207.
10. [10] Blundy J.D., Holland T. J., “Calcic amphibole equilibrium and a new amphibole plagioclase geothermometrs”, Cont. Minerol. Petrol. 104 (1990) pp. 208-224.
11. [11] Pal N., Pal D.C., Mishra B., Meyer F. M., “The evolution of the Palim granite in the Bastar tin province”, Central India, Mineralogy and Petrology 72 (2001) pp. 281-304.
12. [12] Anderson J. L., Smith D. R., “The effect of temperature and oxygen fugacity on Al-in-hornblende barometry”, American Mineralogist 80 (1995) pp. 549-559.
13. [13] Hammarstrom J. M., Zen E., “Aluminium in hornblende and empirical igneous geobarmometre, Am. Mineral 710 (1986) pp.1297-1313.
14. [14] Hollister L.S., Grissom G.C., Peters EK, Stowell HH, Sisson VB., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72(3–4): 231–239.
15. [15] Johnson, M., C., Rutherford, M. J., 1989. Experimental Calibration of the aluminium in –hornbhende geobarometer with application to Long Valley Caldera (California) Volcanic rocks, Geology 17, pp.837-841.
16. [16] Schmidt, M., 1992. Amphibole composition in tonalities as a function of pressure: an experimental calibration of the Al in hombelende barmometre, Cont. Mineal. Petrol. 110, pp. 304-310.
17. [17] Sial, A.N., Ferreira, V.P., Fallick, A.E., Jeronimo, M., Cruz M, 1998. Amphibole- rich clots in calc-alkalic granitoids in the Borborema province northeastern Brazil, Journal of South American Earth Science 11, pp. 457-471.
18. [18] Fleet, M.E., Barnett R., L., 1978. Partitioning in calciferous amphiboles from the Frood mineSudbury, Ontario, The Canadian Mineralogist 16, pp. 527–532.
19. [19] Anderson, J. L., 1996. Status of thermo-barometry in granitic batholiths. Earth Science Review 87, pp. 125-138.
20. [20] Wones, D. R. and Eugster, H. P., 1965. Stability of biotite experiment, theory, and application. Am. Mineral. 50, pp.1228-1272.
21. [21] Molina, J., Scarrow, J., Montero, P.G. and Bea, F., 2009. High-Ti amphibole as a petrogenetic indicator of magma chemistry: Evidence for mildly alkalichybrid.
22. [22] Coltorti, M., Bondaiman, C., Faccini, B., Grégoire, M., O’Reilly, S. Y., Powell W., 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle, Lithos 99, pp. 68-84.
23. [23] Zhang, C.L., Yu, H.F., Ye, H.M., Zhao, Y., and Zhang, D.S., 2006. Aoyitake plagiogranite in western Tarim block, NW China: Age, geochemistry, petrogenesis and its tectonic implications: Science in China Series D: Earth Sciences, v. 49, no. 11, p. 1121–1134.
24. [24] Abdel- Rahman, A. M., 1994. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. Journal of petrology 35, 2, pp. 525-541.
25. [25] Ben, Ohoud, M. D., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Publhshed by Elsevier SAS.
26. [26] Speer, J. A., 1984. Micas in igneous rocks, In Micas (S. W. Baliley, ed). Rev. Mineral. 13, pp. 299-356.
27. [27] Nachit, H., Ibhi, A., Abia, E. l .H, Ohoud, M. B., 2005. Discrimination between primary magmatic biotites, C. R. Acad. Science. Paris Geoscience 337, pp.1415-1420.
28. [28] Forster, H. J., and Tischendorf, G., 1989. Reconstruction of the volatile characteristics of granitoidic magmas and hydrothermal solutions on the basis of dark micas: The Hercynian Postkinematic granites and associated high-temperature mineralization of the Erzgebirge (G.D.R), Chemie der Erade (Geochemistry) 49, pp.7-20.
29. [29] Jiang, Y., Jiang, S., Ling, H., Zhou, X., Rui, X., and Yang, W., 2002. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: Implications for granitoid geneses. Lithos 63, pp. 165-187.
30. [30] Henry, D. J., Guidotti, C. V., Thomason, J. A., 2005. The Ti-substitution surface for low-to-medium pressure metapeliticbiotites: Implications for geothermometry and Ti- substitution mechanisms, American Mineralogist 90, pp. 316-328.
31. [31] Nockolds, S. R., 1947. The relation between chemical composition and paragenesis in the biotite micas of igneous rocks. Am. J. Sci. 245, pp.401-420.
32. [32] Ague, J. J., Brimhall G. H., 1988. Regional variations in bulk chemistry, mineralogy and the compositions of mafic and accessory minerals in the batholiths of California. Geological Society of America Bulletin, 100, pp. 891-911.
33. [33] Deer, W.A., Howie, R. A. and J., Zussman, 1991. An introduction to the rock forming minerals. Longman Scientific and Technical, 528 p.
34. [34] Elkins, L.T., Grove, T. L., 1990. Ternary feldspar experiments and thermodynamic models. American Mineralogist 75, pp. 544-559.
35. [35] Deer, W.A., Howie, R. A., Zussman, J. (1996) Rock forming mineral, Longman 1 , 333 p.
36. [36] Cathelineau, M., and Nieva, D., 1985. A chlorite solid solution geothermometer-The Los Azufres (Mexico) geothermal system. Contribution to Mineralogy and Petrology 91, pp. 324-351.
37. [1] Shabanian N., Davoudian A. R., Dong Y., Liu X., “U-Pb zircon dating, geochemistry and Sr-Nd-Pb isotopic ratios from Azna-Dorud Cadomian metagranites”, Sanandaj-Sirjan zone of western Iran. Precambrian Research, 306 (2018)41-60. [
DOI:10.1016/j.precamres.2017.12.037.]
38. [2] Ghanei ardakanei J., “Chemical mineralogy of the western Ardakan granitoid mass (Central Iran)”, Iranian Journal of Crystallography and Mineralogy,32 (2024) pp. 338-325.
39. [3] Haj Molaali A., Ghomashi A., Afsharian A.M., Hadadian M., “Geology map 1/100000 of Khezrabad”, Geological Survey and Mineral Exploration of Iran (1996).
40. [4] Khosro tharani Kh., Vaziri Moghadam h., “Stratigraphy of the Lower Cretaceous in the western and southwestern areas of Yazd”, Journal of Geology, 7 (1985) pp. 36-45.
41. [5] Droop G. T. R., “A general equation Fe3+ concentration in ferromagnesian silicates and oxygen from microprobe analysis using stoichiometric criteria”, Mineralogical Magazine 51 (1987) pp. 431-435.
42. [6] Esawi E. K., “AMPH-CLASS: An excel spreadsheet for the classification and nomenclature of amphibole based on the 1997 recommendations of the International Mineralogical Association”, Computers Geosciences 30 (2004) pp. 753-760.
43. [7] Leake B. E., Woolley A. R., Arps C. E. S., Birch W. D., Gilbert M. C., Grice J. D., Hawthorne F. C., Kato A., Kisch H. J., Krivovichev V. G., Linthout K., Laird J., Mandarino J. A., Maresch W. V., Nickel E. H., Rock N. M. S., Schumacher J. C., Smith D. C., Stephenson N. C. N., Ungaretti L., Whittaker E. J. W., Youzhi G., “Nomenclature of amphiboles: Report of the Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Names”, Eur. J. Mineral. 9 (1997) pp. 623–651.
44. [8] Leake B.E., Woolley A. R., Birch W. D., Burke E. A. J., Ferraris G., Grice J.D., Hawthorne F.C., Kisch H. J., Krivovichev V. G., Schumacher J. C., Stephenson N. C. N., Whittaker E. J. W., “Nomenclature of amphiboles: Additions and revisions to the International Mineralogical Association’s amphibole nomenclature”, American Mineralogist, 89, pp. 883–887.
45. [9] Stein E., Dietl E., “Hornblende thermobarometry of granitoids of Central Odenwald (Germany) and their implication for the geotectonic development of the Odenwald”, Mineralogy and Petrology, 72, 185-207.
46. [10] Blundy J.D., Holland T. J., “Calcic amphibole equilibrium and a new amphibole plagioclase geothermometrs”, Cont. Minerol. Petrol. 104 (1990) pp. 208-224.
47. [11] Pal N., Pal D.C., Mishra B., Meyer F. M., “The evolution of the Palim granite in the Bastar tin province”, Central India, Mineralogy and Petrology 72 (2001) pp. 281-304.
48. [12] Anderson J. L., Smith D. R., “The effect of temperature and oxygen fugacity on Al-in-hornblende barometry”, American Mineralogist 80 (1995) pp. 549-559.
49. [13] Hammarstrom J. M., Zen E., “Aluminium in hornblende and empirical igneous geobarmometre, Am. Mineral 710 (1986) pp.1297-1313.
50. [14] Hollister L.S., Grissom G.C., Peters EK, Stowell HH, Sisson VB., 1987. Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons. Am Mineral 72(3–4): 231–239.
51. [15] Johnson, M., C., Rutherford, M. J., 1989. Experimental Calibration of the aluminium in –hornbhende geobarometer with application to Long Valley Caldera (California) Volcanic rocks, Geology 17, pp.837-841.
52. [16] Schmidt, M., 1992. Amphibole composition in tonalities as a function of pressure: an experimental calibration of the Al in hombelende barmometre, Cont. Mineal. Petrol. 110, pp. 304-310.
53. [17] Sial, A.N., Ferreira, V.P., Fallick, A.E., Jeronimo, M., Cruz M, 1998. Amphibole- rich clots in calc-alkalic granitoids in the Borborema province northeastern Brazil, Journal of South American Earth Science 11, pp. 457-471.
54. [18] Fleet, M.E., Barnett R., L., 1978. Partitioning in calciferous amphiboles from the Frood mineSudbury, Ontario, The Canadian Mineralogist 16, pp. 527–532.
55. [19] Anderson, J. L., 1996. Status of thermo-barometry in granitic batholiths. Earth Science Review 87, pp. 125-138.
56. [20] Wones, D. R. and Eugster, H. P., 1965. Stability of biotite experiment, theory, and application. Am. Mineral. 50, pp.1228-1272.
57. [21] Molina, J., Scarrow, J., Montero, P.G. and Bea, F., 2009. High-Ti amphibole as a petrogenetic indicator of magma chemistry: Evidence for mildly alkalichybrid.
58. [22] Coltorti, M., Bondaiman, C., Faccini, B., Grégoire, M., O’Reilly, S. Y., Powell W., 2007. Amphiboles from suprasubduction and intraplate lithospheric mantle, Lithos 99, pp. 68-84.
59. [23] Zhang, C.L., Yu, H.F., Ye, H.M., Zhao, Y., and Zhang, D.S., 2006. Aoyitake plagiogranite in western Tarim block, NW China: Age, geochemistry, petrogenesis and its tectonic implications: Science in China Series D: Earth Sciences, v. 49, no. 11, p. 1121–1134.
60. [24] Abdel- Rahman, A. M., 1994. Nature of biotites from alkaline, calc-alkaline and peraluminous magmas. Journal of petrology 35, 2, pp. 525-541.
61. [25] Ben, Ohoud, M. D., 2005. Discrimination between primary magmatic biotites, reequilibrated biotites and neoformed biotites. Publhshed by Elsevier SAS.
62. [26] Speer, J. A., 1984. Micas in igneous rocks, In Micas (S. W. Baliley, ed). Rev. Mineral. 13, pp. 299-356.
63. [27] Nachit, H., Ibhi, A., Abia, E. l .H, Ohoud, M. B., 2005. Discrimination between primary magmatic biotites, C. R. Acad. Science. Paris Geoscience 337, pp.1415-1420.
64. [28] Forster, H. J., and Tischendorf, G., 1989. Reconstruction of the volatile characteristics of granitoidic magmas and hydrothermal solutions on the basis of dark micas: The Hercynian Postkinematic granites and associated high-temperature mineralization of the Erzgebirge (G.D.R), Chemie der Erade (Geochemistry) 49, pp.7-20.
65. [29] Jiang, Y., Jiang, S., Ling, H., Zhou, X., Rui, X., and Yang, W., 2002. Petrology and geochemistry of shoshonitic plutons from the western Kunlun orogenic belt, Xinjiang, northwestern China: Implications for granitoid geneses. Lithos 63, pp. 165-187.
66. [30] Henry, D. J., Guidotti, C. V., Thomason, J. A., 2005. The Ti-substitution surface for low-to-medium pressure metapeliticbiotites: Implications for geothermometry and Ti- substitution mechanisms, American Mineralogist 90, pp. 316-328.
67. [31] Nockolds, S. R., 1947. The relation between chemical composition and paragenesis in the biotite micas of igneous rocks. Am. J. Sci. 245, pp.401-420.
68. [32] Ague, J. J., Brimhall G. H., 1988. Regional variations in bulk chemistry, mineralogy and the compositions of mafic and accessory minerals in the batholiths of California. Geological Society of America Bulletin, 100, pp. 891-911.
69. [33] Deer, W.A., Howie, R. A. and J., Zussman, 1991. An introduction to the rock forming minerals. Longman Scientific and Technical, 528 p.
70. [34] Elkins, L.T., Grove, T. L., 1990. Ternary feldspar experiments and thermodynamic models. American Mineralogist 75, pp. 544-559.
71. [35] Deer, W.A., Howie, R. A., Zussman, J. (1996) Rock forming mineral, Longman 1 , 333 p.
72. [36] Cathelineau, M., and Nieva, D., 1985. A chlorite solid solution geothermometer-The Los Azufres (Mexico) geothermal system. Contribution to Mineralogy and Petrology 91, pp. 324-351.