Volume 31, Issue 2 (5-2023)                   www.ijcm.ir 2023, 31(2): 375-392 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Kamali A A, Moayyed M, Fadaeian M. Mineral chemistry and Chlorite thermometry of late dykes in Sungun Cu-Mo deposit, North West of Iran. www.ijcm.ir 2023; 31 (2) :375-392
URL: http://ijcm.ir/article-1-1803-en.html
1- Research institute of Cultural Heritage & Tourism
2- Department of Geology, University of Tabriz, Tabriz 51664, Iran
3- Department of Geology, Payame Noor University, Tehran, Iran
Abstract:   (767 Views)
Chlorite group minerals have a wide range of chemical composition that reflect their physical and chemical conditions of crystallization. In this research, the chlorite mineral geothermometry method has been used to determine the alteration temperature of delay dykes in Sungun copper-molybdenum porphyritic deposit, located in the northwest Iran. Based on the microprobe data, the compositional changes of chlorite reflect a large differences in the content of silicon, aluminum, iron and magnesium elements in these dykes. The chemical composition of the chlorites in quartz diorite porphyry (DK1a, DK1b), diorite porphyry (DK3) and microdioritic (MDI) dykes placed in picnochlorite range of type clinochlor and quartz- dioritic dykes (DK1c) are in the penin range type of chamosite. Chlorite in quartz diorite porphyry (DK1a, DK1b, and DK1c) and diorite porphyry (DK3) dykes enrichment in the Mg-chlorite and microdioritic (MDI) dykes enrichment in the Fe-chlorite and are classified as trioctahedral chlorites. According to different geothermometric methods, chlorite minerals in quartz diorite porphyry (DK1a, DK1b, and DK1c), diorite porphyry (DK3) and microdioritic (MDI) dykes, have formed at temperatures of 237°C, 217°C, 115°C, 276°C and 247 °C respectively. These temperatures show the effect of hydrothermal fluids in the formation of chlorite and show that the chlorites of the studied area can be related to the effect of hot fluids originating from magma. The relationships between the SiO2 content and the crystallization temperature in Sungun late dykes show an inverse and strong correlation; so that high temperature chlorites in these dykes have lower Si content than chlorites crystallized at low temperatures. Therefore, the silica chlorite content of these dykes can be an indicator of their crystallization temperature. Chlorites have specific compositional changes and atomic substitutions that reflect their crystallization temperature.
Full-Text [PDF 4755 kb]   (164 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] De Caritat P., Hutcheon I.A.N., Walshe J.L., "Chlorite Geothermometry: A Review", Clays Clay Miner. 1993, 41, 219-239. [DOI:10.1346/CCMN.1993.0410210]
2. [2] Deer W.A., Howie R.A., Zussman J., "Rock Forming Minerals: Layered Silicates Excluding Micas and Clay Minerals", Volume 3B.; Geological Society of London, 2009.
3. [3] Zane A., Weiss Z., "A Procedure for Classifying Rock-Forming Chlorites Based on Microprobe Data", Rend. Lincei 1998, 9, 51-56, doi:10.1007/bf02904455. [DOI:10.1007/BF02904455]
4. [4] Cathelineau M., "Cation Site Occupancy in Chlorites and Illites as Function of Temperature", Clay Miner. 1988, 23, 471-485. [DOI:10.1180/claymin.1988.023.4.13]
5. [5] Inoue A., Kurokawa K., Hatta T., "Application of Chlorite Geothermometry to Hydrothermal Alteration in Toyoha Geothermal System", Southwestern Hokkaido, Japan. Resour. Geol. 2010, 60, 52-70. [DOI:10.1111/j.1751-3928.2010.00114.x]
6. [6] Bourdelle F., Parra T., Beyssac O., Chopin C., Vidal O., "Clay Minerals as Geo-Thermometer: A Comparative Study Based on High Spatial Resolution Analyses of Illite and Chlorite in Gulf Coast Sandstones (Texas, USA)", Am. Mineral. 2013, 98, 914-926. [DOI:10.2138/am.2013.4238]
7. [7] Inoue A., Meunier A., Patrier-Mas P., Rigault C., Beaufort D., Vieillard P., "Application of Chemical Geothermometry to Low-Temperature Trioctahedral Chlorites", Clays Clay Miner. 2009, 57, 371-382. [DOI:10.1346/CCMN.2009.0570309]
8. [8] Bourdelle F., Parra T., Chopin C., Beyssac O., "A New Chlorite Geothermometer for Diagenetic to Low-Grade Metamorphic Conditions", Contrib. to Mineral. Petrol. 2013, 165, 723-735. [DOI:10.1007/s00410-012-0832-7]
9. [9] Shahrokhi S., "Mineralogy, Geochemistry and Geothermometry of Chlorite in Malvak Area(South of Malayer-Iran)", Sci. Q. J. Geosci. 2021, 31, 149-162, doi:10.22071/gsj.2020.211497.1734.
10. [10] Samerhe Alavi, Amir Ali Shabai S.N. F., "Composition and Geothermometry of Chlorite Replacing Biotite in Naqadeh and Pasve Granitoid Intrusions. Iran", J. Crystallogr. Mineral. 2014, 22.
11. [11] Alipour Emam Ali, "R.I. Mineral Chemistry of Chlorite as a Method for Geothermometry of Hydrothermal Alteration from Qezildash Sulfide Deposit", NW IRAN. Iran. J. Crystallogr. Mineral. 2010, 18.
12. [12] Stocklin J., "Structural History and Tectonics of Iran", Am. Assoc. Pet. Geol. Bull. 1968, 52, 1229-1258. [DOI:10.1306/5D25C4A5-16C1-11D7-8645000102C1865D]
13. [13] Mehrpartou M., "Contributions to the Geology", Geochemistry, Ore Genesis and Fluid Inclusion Investigations on Sungun Cu-Mo Porphyry Deposit (North-West of Iran). 1993.
14. [14] Hassanpour S., "Metallogeny and Mineralization of Copper and Gold in Arasbaran Zone (Eastern Azerbaijan)", PhD Thesis, Shahid Beheshti University, Tehran (in Persian with English abstract), 2010.
15. [15] Aghazadeh M., Hou Z., Badrzadeh Z., Zhou L., "Temporal-Spatial Distribution and Tectonic Setting of Porphyry Copper Deposits in Iran: Constraints from Zircon U-Pb and Molybdenite Re-Os Geochronology", Ore Geol. Rev. 2015, 70, 385-406. [DOI:10.1016/j.oregeorev.2015.03.003]
16. [16] Kamali A., Moayyed M., Amel N., Hosseinzadeh M.R., "Mineralogy and Mineral Chemistry of Quartz-Dioritic Dykes of Sungun Mo- Cu Porphyry Deposit (NW Iran) Iran", J. Crystallogr. Mineral. 2017, 25, 123-138.
17. [17] Kamali A.A.A.A., Moayyed M., Amel N., Mohammad F., Brenna M., Saumur B.M.B.M.B.M., Santos J.F.J.F., "Mineralogy, Mineral Chemistry and Thermobarometry of Post-Mineralization Dykes of the Sungun Cu-Mo Porphyry Deposit (Northwest Iran)", Open Geosci. 2020, 12, 764-790, doi:10.1515/geo-2020-0009. [DOI:10.1515/geo-2020-0009]
18. [18] Collins L.G., "Hydrothermal Differentiation", Theophrastus Publication 1988.
19. [19] Kamali A., Moayyed M., Amel N., Hosseinzadeh M.R., "Mineral Chemistry and Geochemistry of Lamprophyric Dykes in the Sungun Cu-Mo Porphyry Deposit (Varzaghan-Northwestern Iran)", Ulum-I Zamin 2017, 26, 73-90.
20. [20] Hey M.H., "A New Review of the Chlorites", Mineral. Mag. J. Mineral. Soc. 1954, 30, 277-292. [DOI:10.1180/minmag.1954.030.224.01]
21. [21] Ciesielczuk J.M., "Chlorite of Hydrothermal Origin Formed in the Strzelin and Borów Granites (Fore-Sudetic Block, Poland)", Geol. Q. 2012, 56, 333-344, doi: http://dx. doi. org/10.7306/gq. 1025. [DOI:10.7306/gq.1025]
22. [22] Chabu M., "The Geochemistry of Phlogopite and Chlorite from the Kipushi Zn-Pb-Cu Deposit, Shaba, Zaire", Can. Mineral. 1995, 33, 547-558.
23. [23] Cathelineau M., Nieva D., A Chlorite Solid Solution Geothermometer the Los Azufres (Mexico) Geothermal System", Contrib. to Mineral. Petrol. 1985, 91, 235-244. [DOI:10.1007/BF00413350]
24. [24] Klein C., Hurlbut J.r., "C.S. Manual of Mineralogy", John Wiley & Sons. Inc., New York 1999.
25. [25] Kranidiotis P., MacLean W.H., "Systematics of Chlorite Alteration at the Phelps Dodge Massive Sulfide Deposit, Matagami", Quebec. Econ. Geol. 1987, 82, 1898-1911. [DOI:10.2113/gsecongeo.82.7.1898]
26. [26] Kavalieris I., Walshe J.L., Halley S., Harrold B.P., "Dome-Related Gold Mineralization in the Pani Volcanic Complex, North Sulawesi, Indonesia; a Study of Geologic Relations", Fluid Inclusions, and Chlorite Compositions. Econ. Geol. 1990, 85, 1208-1225. [DOI:10.2113/gsecongeo.85.6.1208]
27. [27] Jowett E.C., "Fitting Iron and Magnesium into the Hydrothermal Chlorite Geothermometer. In Proceedings of the GAC/MAC/SEG Joint Annual Meeting", Toronto, May 27-29, 1991, Program with Abstracts 16; 1991.
28. [28] Hillier S., Velde B., "Octahedral Occupancy and the Chemical Composition of Diagenetic (Low-Temperature) Chlorites", Clay Miner. 1991, 26, 149-168, doi:10.1180/claymin.1991.026.2.01. [DOI:10.1180/claymin.1991.026.2.01]
29. [29] Zang W., Fyfe W.S., "Chloritization of the Hydrothermally Altered Bedrock at the Igarapé Bahia Gold Deposit, Carajás", Brazil. Miner. Depos. 1995, 30, 30-38. [DOI:10.1007/BF00208874]
30. [30] Xie X., Byerly G.R., Ferrell J.r., "R.E. IIb Trioctahedral Chlorite from the Barberton Greenstone Belt: Crystal Structure and Rock Composition Constraints with Implications to Geothermometry", Contrib. to Mineral. Petrol. 1997, 126, 275-291. [DOI:10.1007/s004100050250]
31. [31] El-Sharkawy M.F., "Talc Mineralization of Ultramafic Affinity in the Eastern Desert of Egypt", Miner. Depos. 2000, 35, 346-363. [DOI:10.1007/s001260050246]
32. [32] Klein E.L., Harris C., Giret A., Moura C.A. V., "The Cipoeiro Gold Deposit, Gurupi Belt, Brazil: Geology, Chlorite Geochemistry, and Stable Isotope Study", J. South Am. Earth Sci. 2007, 23, 242-255. [DOI:10.1016/j.jsames.2006.09.002]
33. [33] Zimák J., Novotný P., Dobeš P., "Hydrothermal Mineralization at Domašov Nad Bystřicí in the Nízký Jeseník Uplands", Bull. Geosci. 2005, 80, 213-221.
34. [34] Nimis P., Tesalina S.G., Omenetto P., Tartarotti P., Lerouge C., "Phyllosilicate Minerals in the Hydrothermal Mafic-Ultramafic-Hosted Massive-Sulfide Deposit of Ivanovka (Southern Urals): Comparison with Modern Ocean Seafloor Analogues", Contrib. to Mineral. Petrol. 2004, 147, 363-383. [DOI:10.1007/s00410-004-0565-3]
35. [35] Zachariáš J., Novák T., "Gold-Bearing Quartz Veins of the Bělčice Ore District, Bohemian Massif: Evidence for Incursion of Metamorphic Fluids into a Granodiorite Body and for Isothermal Mixing between Two Types of Metamorphic Fluids", J. Geosci. 2009, 54, 57-72. [DOI:10.3190/jgeosci.039]
36. [36] Plissart G., Féménias O., Mãruntiu M., Diot H., Demaiffe D., "Mineralogy and Geothermometry of Gabbro-Derived Listvenites in the Tisovita-Iuti Ophiolite, Southwestern Romania", Can. Mineral. 2009, 47, 81-105. [DOI:10.3749/canmin.47.1.81]
37. [37] Grosch E.G., Vidal O., Abu-Alam T., McLoughlin N., "P-T Constraints on the Metamorphic Evolution of the Paleoarchean Kromberg Type-Section, Barberton Greenstone Belt, South Africa", J. Petrol. 2012, 53, 513-545. [DOI:10.1093/petrology/egr070]
38. [38] McDowell S.D., Elders W.A., "Authigenic Layer Silicate Minerals in Borehole Elmore 1, Salton Sea Geothermal Field, California, USA", Contrib. to Mineral. Petrol. 1980, 74, 293-310. [DOI:10.1007/BF00371699]

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb