Volume 31, Issue 2 (5-2023)                   www.ijcm.ir 2023, 31(2): 319-334 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rahimi S, Avedini A, Aliyari F, Calagari A A. Consideration of mineralogy, fluid inclusions and type of Pb-Zn-Ba mineralization of the Neyzar deposit, Tabas-Poshte Badam metallogenic belt, east of Iran. www.ijcm.ir 2023; 31 (2) :319-334
URL: http://ijcm.ir/article-1-1771-en.html
1- Department of Geology, Faculty of Sciences, Urmia University, Urmia, Iran
2- Department of Mining Engineering, Faculty of Environment, Urmia University of Technology, Urmia, Iran
3- Department of Earth Sciences, Faculty of Natural Sciences, Tabriz University, Tabriz, Iran
Abstract:   (1162 Views)
The Neyzar lead-zinc-barium deposit is located about 20 km east of Eshgabad city (South-Khorasan Province, east Iran) and is a part of Tabas-Pushte Badam metallogenic belt. This deposit is hosted by carbonate units of Jamal (Permian) and Shotori (Triassic) Formations. Mineralization was mainly controlled by structural factors (thrust faults) in this deposit. Galena, sphalerite and barite are the principal ore minerals with minor amounts of minerals such as calcite, dolomite, quartz, fluorite, malachite, cerussite, covellite, hemimorphite, hematite, goethite, and manganese oxides. The micro-thermometric studies, using fluid inclusions, on calcite and barite crystals were carried out in this deposit. Both calcite and barite minerals are co-existed and co-genetic with Pb-Zn sulfide mineralization occurrence. Petrographic observations of fluid inclusions show that most of them are of liquid-rich two-phase type. Based upon micro-thermometric analysis, the homogenization temperatures of the fluid inclusions in calcite and barite crystals vary from 120 to 220ºC and from 119 to 199ºC, respectively. The salinities of the fluid inclusions in calcite and barite crystals also show changes within the range of 10.12-23.5 and 19.6-23.1 wt% NaCl eq., respectively. In general, the microthermometric investigations revealed that simple cooling and boiling were the main evolutionary trend for deposition of the ore and gangue minerals by sedimentary-derived hydrothermal fluids. Based on the results obtained from field observations, mineralogy, structure and texture and micro-thermometric data, the Pb-Zn-Ba deposit in the Neyzar area is very similar to those of the Mississippi Valley-type (MVT).
Full-Text [PDF 5905 kb]   (184 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Goodfellow W. D., Lydon J. W., "Sedimentary-exhalative (SEDEX) deposits", Geological Association of Canada, Mineral Deposits Division, Special Publication 5 (2007) 163-183.
2. [2] Leach D. L., Bradley D. C., Huston D., Pisarevsky S. A., Taylor R. D., Gardoll S. J., "Sediment-hosted lead-zinc deposits in Earth history", Economic Geology 105 (2010) 593-625. [DOI:10.2113/gsecongeo.105.3.593]
3. [3] Leach D. L., Bradley D. C., Huston D., Pisarevsky S. A., Taylor R. D., Gardoll S. J., "A deposit model for Mississippi valley-type lead-zinc ores", Chapter A of Mineral Deposit Models for Resource Assessment (2010) 1-52. [DOI:10.3133/sir20105070A]
4. [4] Wilkinson J. J., "Sediment-hosted zinc-lead mineralization: Processes and perspectives", Treatise on Geochemistry 13 (2014) 219-249. [DOI:10.1016/B978-0-08-095975-7.01109-8]
5. [5] Rajabi A., Rastad E., Canet C., "Metallogeny of Cretaceous carbonate hosted Zn-Pb deposits of Iran: Geotectonic setting and data integration for future mineral exploration", International Geology Review 54 (2012) 1649-1672. [DOI:10.1080/00206814.2012.659110]
6. [6] Rajabi A., Rastad E., Canet C., "An introduction to metallogeny of Permo-Triassic Carbonate-hosted Zn-Pb and F deposits of Iran: Application for future mineral exploration", Australian Journal of Earth Science 60 (2012) 197-216. [DOI:10.1080/08120099.2012.754792]
7. [7] Soultani S., Karimpour M. H., Homam M., Haydariyan Shahri M. R., "Investigation of mineralogy, structure, texture and geochemical natures of Chah-e-Sorb mine, Tabas", Iranian Journal of Crystallography and Mineralogy 2 (2016) 231-242 (in Persian).
8. [8] Karimi Saeedabadi Z., Karimpour M. H., Malekzadeh Shafaroudi A., Rahimi B., "Investigation of mineralogy, alteration and fluid inclusion in exploration area of Kaviru Pb deposit, northwest of Bushruiyeh, South Khorasan province", Iranian Journal of Crystallography and Mineralogye 2 (2017) 229-240 (in Persian).
9. [9] Pirouzi M., Ghaderi M., Rashidnejad-Omran N., Rastad, E., "New evidences on mineralization, diagenesis and fluid inclusions at Kamar-Mehdi stratabound fluorite deposit, southwest Tabas", Iranian Journal of Crystallography and Mineralogy 17 (2009) 83-94 (in Persian).
10. [10] Ghorbani M., "Zn-Pb deposits in Iran", GSI Publications (2001) 1-480 (in Persian).
11. [11] Bakker R. J., "AqSo_NaCl: Computer program to calculate p-T-V-x properties in the H2O-NaCl fluid system applied to fluid inclusion research and pore fluid calculation", Computers and Geosciences 115 (2018) 122-133. [DOI:10.1016/j.cageo.2018.03.003]
12. [12] Roedder E., "Fluid inclusions", Reviews in Mineralogy 12 (1984) 1-644. [DOI:10.2465/minerj.12.1]
13. [13] Shepherd T. J., Rankin A. H., Alderton D. M. H., "A Practical Guide to Fluid Inclusion Studies", Glasgow and London (1985) 1-239.
14. [14] Aghanabati A., "Geology of Iran", GSI Publications (2006) 1-585 (in Persian).
15. [15] Ruttner A., Nabavi M. H., Iajian J. I., Alavi Naini M., "Geology of the Shirgesht area (Tabas area, east Iran)", GSI Publications (1994).
16. [16] Bonev I. K., "Crystal habit of Ag-Sb-and Bibearing galena from the Pb-Zn ore deposits in the Rhodope Mountains, Geochemistry", Mineralogy and Petrology Sofia 45 (2007) 1-18.
17. [17] Hagni R. D., "Origin of platy galena in the viburnum trend, southeast Missouri", GSA North Central Section 47th Annual Meeting (2013).
18. [18] Ghazban F., Mcnutt R. H., Schwarcs H. P., "Genesis of sediment-hosted Zn-Pb-Ba deposits in the Irankuh district, Esfahan area, West-Central Iran", Economic geology 89 (1994) 1262-1278. [DOI:10.2113/gsecongeo.89.6.1262]
19. [19] Ridley J., "Ore Deposit Geology", Cambridge University Press, New York (2013) 1-398. [DOI:10.1017/CBO9781139135528]
20. [20] Wilkinson J. J., "Fluid inclusion in hydrothermal ore deposit", Lithos 55 (2001) 229-272. [DOI:10.1016/S0024-4937(00)00047-5]
21. [21] Shepherd T. J., Pankin A. H., Alderton D. H., "A practical guide to fluid inclusion studies", Glasgow Blackie and Son (1985) 1-239
22. [22] Bodnar R. J., "Revised equation and table for determining the freezing point depression of H2O-NaCl solutions", Geochimica et Cosmochimica Acta 57 (1993) 683-684. [DOI:10.1016/0016-7037(93)90378-A]
23. [23] Carpenter A. B., Trout M. L., Pickett E. E., "Preliminary report on the origin and chemical evolution of lead- and zinc-rich oil field brines in Central Mississippi", Economic Geology 69 (1974) 1191-1206. [DOI:10.2113/gsecongeo.69.8.1191]
24. [24] Kesler S. E., Martini A. M., Appold M. S., Walter L. M., Huston T. J., Furman F. C., "Na-Cl-Br systematic of fluid inclusions from Mississippi Valley-type deposits, Appalachian Basin: Constraints on solute origin and migration paths", Geochimica et Cosmochimica Acta 60 (1996) 225-233. [DOI:10.1016/0016-7037(95)00390-8]
25. [25] Viets J. G., Hofstra A. H., Emsbo P., "Solute composition of fluid inclusions in sphalerite from North American and European Mississippi Valley-type ore deposits: Ore fluids derived from evaporated seawater", Society of Economic Geologists Special Publication 4 (1996) 465-482. [DOI:10.5382/SP.04.35]
26. [26] Roedder E., Bodnar R. J., "Geologic pressure determinations from fluid inclusion studies", Earth and Planetary Sciences 8 (1980) 263-301. [DOI:10.1146/annurev.ea.08.050180.001403]
27. [27] Shepherd T. J., Rankin A. H., Alderton D. H., "A practical guide to fluid inclusion studies", Blackie, Glasgow (1985) 239p.
28. [28] Pirajno F., "Hydrothermal processes and mineral systems", Springer Science, New York (2009) 1273p. [DOI:10.1007/978-1-4020-8613-7]
29. [29] Basuki N. I., Spooner E. T. C., "A review of fluid inclusion temperatures and salinities in Mississippi Valley-type Zn-Pb deposits: Identifying thresholds for metal transport", Exploration and Mining Geology 11 (2004) 1-17. [DOI:10.2113/11.1-4.1]
30. [30] Leach D. L., Sangster D. F., Kelley K. D., Large R. R., Garven G., Allen C. R., Gutzmer J., Walters S., "Sedimenthosted lead-zinc deposits: A global perspective", Economic Geology 100th Anniversary Volume (2005) 561-607.
31. [31] Wilkinson J. J., Boyce A. J., Everett C. E., Lee M. J., "Timing and depth of mineralization in the Irish Zn-Pb ore field. In: Europe's Major Base Metal Deposits (Eds. Kelly JG., Andrew C.J., Ashton J.H., Dublin)", Irish Association for Economic Geology (2003) 483-497.
32. [32] Wilkinson J. J., "Sediment-hosted zinc-lead mineralization: Processes and perspectives", Treatise on Geochemistry 2nd Edition London (2014) 219-249. [DOI:10.1016/B978-0-08-095975-7.01109-8]
33. [33] Luo K., Zhou J. X., Huang Z. L., Wang Z. C., Wilde, A. A., Zhou W., Tian L., "New insights into the origin of early Cambrian carbonate-hosted Pb-Zn deposits in South China: A case study of the Maliping Pb-Zn deposit", Gondwana Research (2018) 88-103. [DOI:10.1016/j.gr.2018.12.015]
34. [34] Sosnicka M., Luders V., "Super-deep, TSR-controlled Phanerozoic MVT type Zn-Pb deposits hosted by Zechstein reservoir carbonate, Lower Saxony Basin, Germany" Chemical Geology 508 (2019) 62-77. [DOI:10.1016/j.chemgeo.2018.04.025]
35. [35] Choulet F., Charles N., Barbanson L., Branquet Y., Sizaret S., Ennaciri A., Badra L., Chen, Y., "Non-sulfide zinc deposits of the Moroccan high atlas: Multi-scale characterization and origin", Ore Geology Reviews 56 (2014) 115-140. [DOI:10.1016/j.oregeorev.2013.08.015]
36. [36] Forouzesh A., Bonyadi Z., "Application of mineral chemistry to mineralization and alteration evaluation in Zn-Pb Angouran deposit, Zanjan" Iranian Journal of Crystallography and Mineralogy 30 (2022) 207-222 (in Persian). [DOI:10.52547/ijcm.30.2.207]
37. [37] Saboori M., Karimpour M. H., Malekzadeh Shafaroudi A., "Mineralogy, ore chemistry, and fluid inclusion studies in Gushfil Pb-Zn deposit, Irankuh mining district, SW Isfahan" Iranian Journal of Crystallography and Mineralogy 26 (2019) 857-870 (in Persian). [DOI:10.29252/ijcm.26.4.857]
38. [38] Aminzadeh B., "Mineralization and Fluid Inclusion Studies in the Tarz Carbonate-Hosted Pb-Zn Deposit, Central Iran ", Journal of Economic Geology 11 (2019) 387-401 (in Persian).

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb