بررسی خلاک دیرینه کالکتیو در سازند شوریجه؛ نمونه‌ای از بررسی قرقره در شرق حوضه رسوی سه داغ

مهدی کیمیاری، مهدی‌حسین محصوی قراپایی*، سیدرضا موسوی حرمی، اسدالله محبوبی

(دریافت مقاله: 97/5/30، نسخه نهایی: 98/4/9)

چکیده: سازند شوریجه (وزواسیک پسین- کرناسه پیشین)، در شرق حوضه رسوی که‌داغ، از رشته‌های آوری تشکیل شده و افزون بر آن، خلاک دیرینه از نوع کلسی‌سول نیز در این سازند شناسایی شده است. کلسی‌سول‌های برخی قرقره دارای شکل‌های درشت‌رخ‌دار و رنگ، رنگ‌نما و ویژگی‌های استحکام دارند که از شناسایی شده است. خلاک دیرینه در این بررسی در معرض قرقره‌های حاصل از مواد غذایی سیمانی شدن و بوی تند قرقره‌های رنگ‌ریز. فشار دی اکسید کربن دیرینه در این بررسی 

مدل‌سازی به‌روزی این مدل‌های حیاتی، نوسان‌های سطح ایستایی در بین مخاوت نقش مهمی در تشکیل خلاک دیرینه کالکتیو از جمله در شرق حوضه رسوی داشته‌اند.

واژه‌های کلیدی: خلاک دیرینه، کلسی‌سول، نوسان‌های سطح ایستایی، سازند شوریجه، حوضه رسوی که‌داغ

مقدمه

خلاک‌های دیرینه در جنوب غربی سبز لازم دارد. این نوع خلاک‌ها توانایی مختلف به‌شمار می‌رود که تشکیل آنها به‌بیان مناسب و مناسب به‌دلیل وجود نیازهای مختلف و بی‌پردازی از این رو به‌منظور بهبود حیاتی و مناسب نیز می‌باشد.

پایگاه‌داری، نوش‌سازی و سطح آب‌های زیرزمینی بستگی دارد. با استفاده از شیمیایی خلاک‌های کابلی و جمع‌کردن، مقدار و یا حتی شیمیایی هستند و قرقره‌های زیست‌ها از جمله شدت داشتن به توپی و فعالیت‌های زیست‌زده در این بررسی اطلاعات چراپرده مشابه دریچه‌ای است که در نتیجه اکسید کربن در زمین تشکیل دهنده می‌باشد. در این بررسی، پژوهشی کالکتیو سازند شوریجه در شرق قرقره به صورت جزئی از این پژوهش ۱۰۱۰ (۲۶) واژه‌ای از خلاک دیرینه.
بررسی رخسارهای سنگی و تفسیر محیط رسوبی سازند شوریجه و بوژه در بخش‌های شرقی و جنوب شرقی حوضه رسوبی کیهان به منظور افزایش داده‌ها که رسوب‌های این سازند بیشتر در سامانه رودخانه‌ای برده بریده با استفاده از شیمیایی، الگویی و سایر روش‌های تحقیق در بخش‌های شرقی و جنوب شرقی حوضه، استنتاج از سامانه‌های رودخانه‌ای پیچان رودی دریاچه‌های شور، دلتایی، دریاپی و دشت ساحلی وجود داشته است [4, 5] که در همه آن‌ها رخساره‌های گوناگونی از خاک دریاپی دیده می‌شود (شکل 2).

سازند شوریجه شامل رخساره‌های سیلیسی آواری (کلکومرا، ماسسنک و شیل) است که به طور هم‌ساز بر سازند کریستنیانی مزدوران قرار دارد. خاک‌های دیرینه مورد بررسی در این پژوهش مربوط به بخش بالایی سازند شوریجه در بخش ققره واقع در قسمت شرق این ایب هستند. ضخامت سازند شوریجه در بخش ققره ۲۰۴ متر است.

روش بررسی

خاک‌های دیرینه برای انتخاب نواحی از نظر مکرو‌پوشیدن و رخسارهای باید در سطح‌های رسوبی ابریز کننده و در سطح‌های نمونه‌برداری انجام شد. این هدف با استفاده از نگاه گوگردی و رنگ‌دان نمود. این رنگ‌دان خاک‌های دیرینه بر پایه شیمی عامل اصلی مقدار موارد آن، افق خاک دیرینه، شرایط آب‌گیری-کاهش، دگرگونی رسوب کالرازی غیر قابل حمل و رسوب کالرایی-کاهش امکان انحلال (محال) انجام می‌شود [7] که بر این اساس نوع خاک دیرینه عرضه‌شده است.

شکل 1: نقشه زمین شناسی ناحیه بخش ققره که موقعیت بررسی‌های با نشانه‌های استنتاجی شده است.
شکل 2: سنون چینه شناسی سازند شوریجه در پرش قرقمه.
بحث و بررسی

خاک‌های دیرینه سازند شوری‌چه (برخ قرقره) در بررسی‌های صحراىی و آزمایشگاهی بر پایه فرآیندهای شارکری ای (۲)

تویفک کالکترها

در توصیف صحراىی این گونه از خاک‌های دیرینه، ریختارناده و زبان ابتکار بررسی شد. در سرتاسر زمان، بررسی‌ها نشان داده‌اند که کالکترها می‌تواند گروه‌های مختلفی از آزمایشگاهی و صحراىی داشته باشد. توصیف کالکترها در این پژوهش بر اساس داده‌ها و پژوهشگران ارائه شد.

کانی شناسی و سیستم‌های XRD

بر اساس طیف‌های XRD، تکیه کانی شناسی این نوع خاک دیرینه کلسیت و با درصد کربنات کوارتز است (شکل ۴ ج). نشان داده‌کننده نتایج تیم‌های جهانی کالکترها و بررسی‌ها نشان دهنده این است که کالکترها در ساختار و تشکیل میکروکسبوک‌ها نقش دارند. کالکترها در این ساختار نقش دارند و نقش دارند.
محلول آلیزارین قرمز و به روش اصلی [8] انجام شده که به این ترتیب، بخش‌های معمول کلسیتی کاملاً رنگ گرفته شدهای رنگ تغییر جریان نشان دهنده مقادیر کمی اسیدولومیت در بین بلورهای کلسیت هستند (شکل ۵).

(کمتر از ۵ درصد) دیده شد. در این بخش گاهی کانی موسکویت با مقادیر ۱ تا ۲ درصد شناسایی شد (شکل ۵ ب)، در برخی از مقاطع نیز فلدسپار قلبی با مقادیر کمتر از ۲ درصد مشاهده گردید. تفکیک کلسیت از اسیدولومیت به وسیله رنگ‌آمیزی با}

**شکل ۴** تصاویر صحرایی کالکریت‌های برش قره‌ده (الف) مانند سگه‌های یک سوم بالایی برش قره‌ده شامل کالکریت (بیکن فرمز رنگ‌دار، ج) از طول حدود ۱ متر به عنوان مقیاس است. (ب) کالکریت یودز (پ) کالکریت گره‌کی (پ) کالکریت گره‌کی بسیاری مشخص، (ت) آثار XRD (شش‌تایی، ج) نمودار یک نمونه کالکریت در (ج) تصویر میکروسکوپ الکترونی از نمونه کالکریتی برش قره‌ده که نشان می‌دهد کلسیت (Ca) در فضاهای بین دانه‌های کوارتز (Q) بر جای گذاشته شده و سبب دچار انحلال شده است.
تشکیل گرنبه‌های با درخشنده‌گی بالا، شرایط احیایی در منطقه آب آزاد رخ داده است (شکل ۶) با گرافی مشخص می‌شود که نشان دهنده تغییر شرایط شیمیایی رشد بلوه است. تغییر در شدت پرتویه‌ای نسبت به سطح کالی نشان دهنده تغییر در فراوانی Fe۲۰ و Mn۲۰ در بلوه است که به ترتیب به عناصر عامل مغناطیسی بالدارنده سبب تغییری در بیان نورپردازی اتمسفر و عنصر بازرگانی مانند نور می‌شود [۱۱]. بنا براین، در خشن‌گی گرنبه‌ها با فراوانی بالا Fe۲۰ (مهمترین عامل بازرگانی) و Mn۲۰ (مهمترین عامل عامل کننده در شکه بلوه) کنترلی می‌شود.

کلیه‌های گرنبه‌ای در برسی‌های میکروسکوپی کاندیتیاکی (CL) با منطقه‌بندی به خوبی مشخص می‌شوند که نشان می‌دهند تغییر شرایط شیمیایی رشد بلوه است. تغییر در شدت پرتویه‌ای نسبت به سطح کالی نشان دهنده تغییر در فراوانی Fe۲۰ و Mn۲۰ در بلوه است که به ترتیب به عناصر عامل مغناطیسی بالدارنده سبب تغییری در بیان نورپردازی اتمسفر و عنصر بازرگانی مانند نور می‌شود [۱۱]. بنا براین، در خشن‌گی گرنبه‌ها با فراوانی بالا Fe۲۰ (مهمترین عامل بازرگانی) و Mn۲۰ (مهمترین عامل عامل کننده در شکه بلوه) کنترلی می‌شود.
فصل‌هایی از جایگاه و زمان تشکیل از سیمان نشان دهنده دو موردی به کلسم (MgCa) در میان دوکی‌های دیگری که دستگاه‌های مشخص بوده و فضاهای حاوی را نشان می‌دهد. قطر کلسم‌های قطعه‌ای 6 تا 15 میلی‌متر است.

**درآمد دیالزیزی**

کالکریت‌های سیمان نشانگر (کالکتریت‌های قاره‌ای) در معرض فرازده‌ای دیازونی مختلف شامل سیمان‌شن، فشرده‌سیمان. دو موردی شدن و بپرستی شدن و فشارهای دیگر که در امکان توضیح داده می‌شود.

الف- سیمان‌شن: این فرازده از اصل‌ترین فرازده‌های دیازونی در شکل‌های رسوی است که در بافت‌های رسوبی می‌شود. این فرازده در هماتی‌های مختلف، متفاوت است و به صورت‌های گوناگونی دیده می‌شود. سیمان‌شن داشته باشد که در سیال‌های در پیش‌اله از گردن‌های است که به‌طور گسترده‌تر سیمان‌شده است که در امکان توضیح داده می‌شود. [17]

**دیالزیزی**

شکل‌های کالکریت‌هایی که نشان‌دهنده از کالکریت‌های قاره‌ای است. (a) سیمان‌شن، (b)و (c) دو موردی کالکریت‌های قاره‌ای.}

[553

بررسی حکایت کالکریتی در سیمان‌شن: نمونه‌ها از...
تصاویر میکروسکوپی از فراîدەگە دیازنتی در نمونەگەی کالکرێتی سانزە شوریجه (برش فرکرە). همەی تسامور در نور فلزیتە متقاطع (XPL).

تێب شەوە. (ب) سەبانەی ب. ب. فراîدەی دیازنتی تێکەی (توک پیکان). (ت) فراîدەی دیازنتی. (توک پیکان).

ت- پێرێتی شەند. پێرێتی کە فراîدەی دیازنتی ناشی بۆ واکنش شەبەنگی سەوە. سەرگەڕە دەست کە در شەرەتەوانی و شێوازی وەڵبەر در شەرەتەوانی دەوێن کە سەرەتەوانی تەپەی (مێژگانی آب مەزایە) شەبانگی مێژگانی [21]. پێرێتی دەنیەنکەیە کە بڵۆریەی رێژە و کەرە مێژگانی پێڕێت در ایادا.
به شناسایی عوامل اصلی تشکیل دهنده این رسوپا کمک می کند انجام شد. فلزات عناصر فرعی 7 نمونه کالکرینی در جدول 1 آنالیز شدند. نمونه های کالکرینی، مقدار متوسط 0.86 تا 0.87 درصد وزنی (میانگین 0.85 درصد وزنی)، مقدار نسبی 118.4 تا 217.91 درصد وزنی (میانگین 217.91 درصد وزنی)، مقدار استرخی 14.75 تا 14.76 درصد وزنی (میانگین 14.76 درصد وزنی)، مقدار منځنی 11.34 تا 11.36 ppm (میانگین 11.35 ppm)، مقدار منځنی 10.17 تا 10.18 ppm (میانگین 10.18 ppm) و مقدار کلسیم 34.24 تا 39.11 ppm (میانگین 39.11 ppm) درصد وزنی (مقدار متوسط 36.78 درصد وزنی) است. نتایج تجزیه آبیزوتی نیز در جدول 2 آورده شدند.

<table>
<thead>
<tr>
<th>نوع روباه</th>
<th>بررسی کالکرینی</th>
<th>تعریف</th>
</tr>
</thead>
<tbody>
<tr>
<td>پلورهای کلسیت پیرامون دهانه کالکرین</td>
<td>این بافت به صورت پلورهای کلسیت پیرامون کالکرین دیده می شود (شکل 8A). عضو این پلورهای کلسیت کنتری از طول این آرانه، تشکیل این پلورهای کلسیت نتیجه فعالیت قارچ‌ها سیلوکسیدها و فعالیت‌های میکروبی است (شکل 8B).</td>
<td>ریز بافت بنا</td>
</tr>
<tr>
<td>حفاری موجودات</td>
<td>این بافت سبزیجی و یزابی ندارد. تغییرهای طبیعی به صورت رنگ‌های لویای شکل هستند که طلایی فلزی از طریق آن به‌بین افترا (شکل 8C).</td>
<td>ریز بافت بنا</td>
</tr>
<tr>
<td>زمینه میکروتی</td>
<td>در بیشتر نمونه‌های کالکرینی مورد بررسی، همه نقاط نازک از میکروتی تشکیل شدیدان هستند که شکل این زمینه میکروتی در نمونه‌های کالکرینی از فعالیت‌های میکروبی در مزرعه آب و رسوب تشکیل شد. (شکل 8D).</td>
<td>ریز بافت بنا</td>
</tr>
<tr>
<td>انواع سیمانی‌های دلخواه و بلوطی</td>
<td>در بررسی های میکروسکوپی انجام شده، این نوع روباه یافته نشده است. (شکل 8E).</td>
<td>ریز بافت بنا</td>
</tr>
</tbody>
</table>
جدول ۲ داده‌های تجزیه عملکردی و ایزوتونی نمونه‌های کلیسی سولی برای ققره

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>Ca(%)</th>
<th>Fe(PPm)</th>
<th>Mg(%)</th>
<th>Mn(PPm)</th>
<th>Na(PPm)</th>
<th>Sr(PPm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۶۲CAL</td>
<td>۲۵۸۱</td>
<td>۱۴۴۲۸</td>
<td>۱۱۸۴</td>
<td>۱۹۰۹۲</td>
<td>۲۵۱۶۷۶</td>
<td>۵۷۵۱۶۴</td>
</tr>
<tr>
<td>۶۱CALI</td>
<td>۲۸۰۵</td>
<td>۴۴۴۹۸</td>
<td>۱۱۲۴</td>
<td>۱۱۸۳۲</td>
<td>۲۳۳۸۲۱</td>
<td>۵۴۶۱۷۸</td>
</tr>
<tr>
<td>۶۱CALI</td>
<td>۲۹۶۰</td>
<td>۱۱۱۱۱</td>
<td>۰۲۷۰</td>
<td>۸۸۸۳۳</td>
<td>۴۷۷۸۲۷</td>
<td>۷۵۸۶۸۲</td>
</tr>
<tr>
<td>۹۴CALI</td>
<td>۳۲۳۲</td>
<td>۵۴۴۲۸</td>
<td>۰۷۵۴</td>
<td>۴۲۱۸۸</td>
<td>۳۰۴۲۶</td>
<td>۸۴۵۸۰</td>
</tr>
<tr>
<td>۹۴CALI</td>
<td>۳۸۸۳</td>
<td>۸۸۸۳۳</td>
<td>۰۲۷۰</td>
<td>۷۱۴۳۲</td>
<td>۴۷۹۷۲۷</td>
<td>۵۳۶۴۱۰</td>
</tr>
<tr>
<td>۱۰۱CALI</td>
<td>۳۸۸۳</td>
<td>۳۱۸۸۹</td>
<td>۰۷۵۴</td>
<td>۱۹۰۹۲</td>
<td>۲۱۰۳۸۷</td>
<td>۱۱۱۴۱۵</td>
</tr>
<tr>
<td>۱۰۸CALI</td>
<td>۳۷۵۴</td>
<td>۱۰۹۱۷</td>
<td>۰۵۰۰</td>
<td>۹۸۸۴۴</td>
<td>۴۷۶۸۳۳</td>
<td>۹۵۸۴۸۴</td>
</tr>
</tbody>
</table>

**تحلل داده‌های زمین‌شناسی**

به طور کلی در آب‌های زیرزمینی، غلظت عناصر سدیم و استراتاسیوم بالا و غلظت عناصر آهن و منگنز پایین است [۱۲]. در نمونه‌های مورد بررسی، عنصر سدیم و استراتاسیوم مقادیر بالایی را نسبت به عنصر آهن و منگنز داشته، از طرفی، مقادیر منفی ایزوتونی اکسیژن در اثر آب‌های جوی و شهایی است [۱۳]. بر این اساس می‌توان گفت که به‌طور مولکولی محوطه در محیط دلنرهای که هم سطح ایستایی بالا امده و هم در معرض آب‌های جوی است، در تشکیل کالکریت‌های برخ ققره مؤثر بوده است. به عبارتی، نوسانات سطح ایستایی باعث تشکیل کالکریت‌های برخ ققره شده است.

عوامل متعددی جوئ نوع فعالیت زیستی، عمق تشکیل کریستال‌ها، نرخ تنفس خاک و میانگین تولید CO₂ می‌تواند بر مقادیر ایزوتونی خاک‌های دیرینه کالکریت‌ها اثر داشته باشد [۱۴]. نتایج نژاد ایزوتونی خاک‌های پایدار کرین نمونه‌های کلیسی سولی مورد بررسی نشان دهنده مقدار منفی ۱۳C به میانگین ۵۷۵٪ در هزار سال است. در بررسی‌های پیشین در انتقال مولکولی منفی نتایج ایزوتونی کرین نمونه‌های کلیسی سولی مورد بررسی را پوشش گیاهی سطحی نوع C3 بیان کرده‌اند [۱۵]. این در حالتی که با توجه به بالایی رزین فاتا با کمترین چسبانی از فعالیت ریزجانداران است، مقادیر منفی ۱۳C نمونه‌های

[۲۹] استفاده شد.

کلمه سولی، افزون بر پوشش گیاهی سطحی نوع C3 شامل درختان، بونه‌ها و چمن‌زاره‌ها که اغلب در شرایط آبی و هواها خشک تا نیمه خشک فراوان است می‌تواند به وجود فعالیت‌های میکروبی نیز نسبت داده شود (شکل ۸).
مقدار بارندگی دریبته
مقدار بارندگی دریبته را می‌توان با مدل این‌طوری و بررسی گره‌های کالکتریکی تعبیه کرد. در این پژوهش، مقدار بارندگی دریبته با استفاده از عمق گره‌های کالکتریکی و بکر بدن رویاب جامع مراجعه 2013 با دست آمده استفاده از این روش نتایج کاربردی گره‌های بکر است. در زیر بر اساس و بر طور کامل از بررسی ماده‌سنجی جدا می‌شوند. و سادگی می‌توان عمق تحقیق آن را اندازه‌گیری کرد. عمق گره‌های کالکتریکی با خطاهای اندازه‌گیری و نسبت به شبکه ساختمان تصحیح شده و مقدار بارندگی سالانه (MAP) بر حسب میلی متر از رابطه زیر محاسبه می‌شود:

\[
P_{\text{MAP}} = 137.24 + 0.6445D_0 - 0.00013D_0^2 \]

که در اینجا C یک میانگین دمای سالانه بوده که مقدارهای آن در نظر گرفته شدند. [20] مقدار کریت آفلی است که رابطه (1) میانگین ترکیب ایزوتوپی کریت آفلی در کرنال پیشین حداکثر 26-درصد اعمال شد. همچنین، 13C که برای افزایش ترکیب دی اکسید کریت جو از رابطه زیر محاسبه شد:

\[
13C = \frac{1000 - 11.98 + 0.127(1 - 0.029D) + 133}{1.1} \]

که مقدار ایزوتوپی موادآلی موجود در خاک با (همان 13C) است. سرانجام، با قرار دادن همه داده‌ها در رابطه (1) فشار دی اکسید کریت کالکتریک‌های خاکبردار سازند شوریه در 8 C کیلو پسالت مقدار بارندگی دریبته در بررسی رابطه مرجع [22] حداکثر 26 حداکثر 25.18 میلی‌متر و بر اساس رابطه (2) حداکثر 26 میلی‌متر در سال برآورد شد که این مقایسه با جغرافیایی دریبته همکاری دارد (شکل 9). مقایسه بارندگی سالانه محاسبه شده در حدود 1/3 از رابطه است.
این صفحه به فارسی نوشته شده است و شامل تصاویر و نمودارهاست. متن واضحی برای تبدیل به یک نمایش طبیعی نمی‌تواند بیان شود. ممکن است با توجه به شرایط و محدودیت‌های موجود، بخشی از متن ترجمه نمی‌شود.
جدول ۲ مقدار پارامتر سالانه محاسبه گردیده برای لوح‌ها و رویت مراجع [۲۴، ۳۳]

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>قطر (سانتی‌متر) [۲۹]</th>
<th>MAP (mm) [۲۹]</th>
<th>MAP (mm) [۱۶]</th>
</tr>
</thead>
<tbody>
<tr>
<td>۳۵CAL</td>
<td>۸</td>
<td>۱۴۸۸</td>
<td>۱۹۳۲</td>
</tr>
<tr>
<td>۶۱CAL</td>
<td>۳۳</td>
<td>۱۵۸۳۷</td>
<td>۲۲۲۸۳</td>
</tr>
<tr>
<td>۹۱CAL</td>
<td>۳۷</td>
<td>۱۵۴۵۵</td>
<td>۲۰۹۴۱</td>
</tr>
<tr>
<td>۹۲CAL</td>
<td>۴۱</td>
<td>۱۷۳۴۵</td>
<td>۲۴۴۹</td>
</tr>
<tr>
<td>۱۰۱CAL</td>
<td>۶</td>
<td>۱۴۱۱</td>
<td>۱۸۹۹</td>
</tr>
<tr>
<td>۱۰۲CAL</td>
<td>۷</td>
<td>۱۴۱۷۵</td>
<td>۱۷۹۷۷</td>
</tr>
<tr>
<td>۱۰۳CAL</td>
<td>۳۳</td>
<td>۱۵۷۷۳</td>
<td>۲۰۰۴۴</td>
</tr>
</tbody>
</table>

مقایسه نتایج به دست آمده با جغرافیای گیاه داغ که داغ نتایج زمین شیمی‌کلسی‌سولهای ساند شوریه در بر شرق‌رودی به نوبه جغرافیایی دیرنده این حوضه بر روی زمان‌زوراسکپ پیشین-کرناسه پیشین که بر پرستی گردیده حوضه رسوی که داغ اثر داشته است [۲۴، ۳۳] بررسی شد. تفسیر محیط دیرنده بر پایه ترکیب اروپتوب کرین- و اکسیژن-خاک- های دیرنده کلسی‌سولی برای بررسی با این شرایط هم‌خوانی دارد. حوضه رسوی که داغ اثر داشته است [۲۴، ۳۳] که این عرض جغرافیایی دیرنده در بر دارند شرایط آب و هوایی نیمه حاره‌ای بوده است [۲۴، ۳۳] مقدار بارور شده میانگین بارندگی سالانه برابر با ۱۴۱ تا ۲۴۴ میلی‌متر نیز با عرض جغرافیایی یاد شده هم‌خوانی دارد، البته باید توجه داشت که برای مورد بررسی در بخش شرقی حوضه رسوی که داغ قرار دارد که دیرنده بارندگی آن کمتر از توانایی این حوضه بوده است. بارور فشار دی-اکسیدکریون [۹۰۰-۱۱۰۰ ppmv] است. بر اساس دیرنده این ناشی از کلسی‌سولهای ساند مورد بررسی [۲۴، ۳۳] ناشی از کلسی‌سولهای ساند مورد بررسی (۱۰۲۳۷/۱۰۳۷۸/۱۰۳۸۱/۱۰۴۲/۱۰۴۲۱ ppmv) ناشی می‌دهد که شرایط آب و هوایی در گستره زمانی زوراسکپ پیشین-کرناسه پیشین متعادل بوده.


[31] Arens N.C., Jahren A.H., Amundson R., “Can C3 plants faithfully record the carbon


