ترکیب شیمیایی کانی ها و دما-فشارسنجی پریدوپتیهای افیولیتیهای کردستان، زاگرس، غرب ایران

آزاد کریمی، علی احمدی*، عبدالرضا پرتابان

گروه زمین شناسی، دانشکده علوم، دانشگاه سیستان و بلوچستان زاهدان، ایران

چکیده: کانی‌شناسی و زمین‌دانی-فشارسنجی پریدوپتیهای در مجموعه آفیولیتیهای مریوان - کامیاران به عنوان یکی از کشورهای تپه‌های تکاملی نروژی و پوسته‌های هستند. نتایج بررسی‌های فلزات درک را به‌عنوان یکی از کشورهای تپه‌های تکاملی نروژی به‌عنوان یکی از کشورهای تپه‌های تکاملی نروژی به‌عنوان یکی از کشورهای تپه‌های تکاملی نروژی به‌عنوان یکی از کشورهای تپه‌های تکاملی نروژی

(دریافت مقاله: 13/11/99، سخن نهایی: 98/8/12)

واژه‌های کلیدی: پریدوپتیه، دما-فشارسنجی، تنبیس، آفیولیتیهای زاگرس

مقدمه

روش کار

در این پژوهش، ترکیب شیمیایی پریدوپتیهای افیولیتیهای کردستان در گستره مریوان ناکامیاران، که شامل 311 نمونه برداشت شده از کل مجموعه آفیولیتیهای مقطع منطقه‌ای مربوط به نمونه‌های پریدوپتیه تهیه شد. سپس از میان نمونه‌های مناسب، مقاطعه aahmadi@science.usb.ac.ir

*نویسنده مسئول، تلفن: 81/140-85821، زمان: 05/3334444565، پست الکترونیکی
میروبان-کامیاران به ترتیب از پایین به بالا از سنگ‌های فراشیک، گاروب، مجموعه دابکه‌ای صفحه‌ای و پایین‌تری معنویتی شکل دارد. سنگ‌های فراشیک در محله دو گروه بریده‌های گوشه‌ای و بریده‌های پهناوری هستند. بریده‌های گوشه‌ای بریده‌های پهناوری منطقه‌ای را تشکیل می‌دهند. این سنگ‌ها به صورت سطحی و تغییر در راستای گل‌های زیراتنگی منطقه میروبان-کامیاران رخ می‌دهند. از آنجا که به منطقه‌های گل‌های محدود هستند باید طور کامل به پیکرهای کوچک، با رنگ تبیین شده‌اند. از این رو، فرایند سرعت‌پذیری شدن این سنگ‌ها شرایط است. بریده‌های گوشه‌ای که کمتر تجزیه شده‌اند و در رختی‌های ییزد، برخی‌اند و در پیستویی به مقدار کمتری دوخت و لزوریت هستند. بریده‌های گوشه‌ای پهناوری در منطقه مورد بررسی ناحیه‌ای در خیز پایین‌ریز منطقه گروه‌گذاری شده است. (1) در کل، سنگ‌های زیراتنگی و همراه با بریده‌های گوشه‌ای دارند. این سنگ‌ها در مقایسه با بریده‌های گوشه‌ای کمتری در معرض دگرگونی بوده‌اند. بریده‌های پهناوری منطقه‌ای نشان می‌دهد، اما درون‌ریزی و لزوریت و هاربورزیت هستند، اما دونیت نیز به مقدار کمتری همره‌اند. (2) [14] واقع هستند.

این مجموعه افیولیتی تقریباً تاکید کمی از یک مجموعه افیولیتی را نشان می‌دهد. با این وجود، نواحی کامیاران به اصل در اثر فرابیندهای زمین‌ساختی، پوسکی و گسترند نواحی پهناوری را ندارد. به طور کلی، نواحی افیولیتی

[شکل 1] نواحی ساختمانی ایران به همراه با نقشه‌های شیمیایی این نواحی که منطقه مورد بررسی با مستطیل سبز بر آن مشخص شده است. (برگرفته از مرجع [10] با تغییرات.)
ترکیب شیمیایی کانی‌ها

از آن چه که شیمی کانی در بررسی سنگ‌های پریدوتانی از نظر ترکیب شیمیایی و شرایط دما و فشار تحقیقاتی آنها اهمیت قابل توجهی دارد، ترکیب شیمیایی کانی‌های پریدوتانی بیشترین و اساساً همگانه ترکیب شیمیایی آنها بررسی شده که نتایج در ادامه بیان می‌شود.

این نتایج تجزیه رژیم‌دارشی الکترون الپسین (جدول 1) نشان می‌دهد که این کانی در پریدوتانی‌های مورد بررسی منطقه‌بندی ندارد به طوری که در جند تجزیه زمین‌شناسی از مشخص می‌شود. ترکیب الپسین در این جدول 1: نتایج تجزیه رژیم‌دارشی الکترون الپسین (apfu) و بر اساس 4 اکسین محاسبه شده‌اند.

<table>
<thead>
<tr>
<th>شماره</th>
<th>نمونه</th>
<th>D88</th>
<th>D81</th>
<th>D9</th>
<th>D45</th>
<th>MZ4</th>
<th>P4</th>
<th>M4</th>
<th>M38</th>
<th>M40</th>
<th>M40</th>
<th>M24</th>
</tr>
</thead>
<tbody>
<tr>
<td>نظم</td>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SiO2</td>
<td></td>
<td>41.12</td>
<td>41.15</td>
<td>41.19</td>
<td>41.65</td>
<td>41.92</td>
<td>42.36</td>
<td>42.87</td>
<td>43.69</td>
<td>43.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TiO2</td>
<td></td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.4</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al2O3</td>
<td></td>
<td>0.6</td>
<td>0.3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.1</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FeO</td>
<td></td>
<td>8.74</td>
<td>8.85</td>
<td>8.65</td>
<td>8.02</td>
<td>8.82</td>
<td>11.53</td>
<td>11.48</td>
<td>11.58</td>
<td>11.53</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MnO</td>
<td></td>
<td>0.17</td>
<td>0.15</td>
<td>0.14</td>
<td>0.11</td>
<td>0.16</td>
<td>0.14</td>
<td>0.21</td>
<td>0.16</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CaO</td>
<td></td>
<td>0.12</td>
<td>0.14</td>
<td>0.2</td>
<td>0.14</td>
<td>0.17</td>
<td>0.11</td>
<td>0.13</td>
<td>0.15</td>
<td>0.09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na2O</td>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr2O3</td>
<td></td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NiO</td>
<td></td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>99.47</td>
<td>99.53</td>
<td>99.98</td>
<td>100.05</td>
<td>99.89</td>
<td>100.29</td>
<td>99.88</td>
<td>99.88</td>
<td>99.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Si</td>
<td></td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ti</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Al</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe3</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe2</td>
<td></td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mn</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg</td>
<td></td>
<td>1.80</td>
<td>1.80</td>
<td>1.80</td>
<td>1.80</td>
<td>1.74</td>
<td>1.74</td>
<td>1.76</td>
<td>1.74</td>
<td>1.76</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td></td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cr</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ni</td>
<td></td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>مجموع</td>
<td></td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mg#</td>
<td></td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.91</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td>0.88</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fe#</td>
<td></td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Te</td>
<td></td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td>0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fo</td>
<td></td>
<td>9.59</td>
<td>9.55</td>
<td>9.71</td>
<td>9.58</td>
<td>9.70</td>
<td>8.75</td>
<td>8.75</td>
<td>8.75</td>
<td>8.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fa</td>
<td></td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td>0.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca-OI</td>
<td></td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td>0.16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

مجلة بلوشنشانسی و کانی‌شناسی ایران
کریمی، احمدی، پرتیبان
924
نمونه‌های به شدت سرپانشینی شده نیز به خوبی حفظ شده است. نتایج تجزیه ریزپردازی بیان کننده (جدول ۲) نشان می‌دهد که تغییرات ترکیب شیمیایی در اسپینل موجود در سنگ‌های مورد بررسی قابل توجه است. یک نمونه‌های اولیه کمتر از ۳ درصد وزنی دارد، در حالی که در نمونه‌های پوسته‌ای به ۲ درصد وزنی را نشان می‌دهد.

ترکیب شیمیایی گروه CT Cl2MgO-Wo

پیروکسین: به دلیل استاتیشن شدن اروپرکسین‌ها، نتایج تجزیه پنج مورد اروپرکسین در جدول ۲ ارده شده است و بقیه داده‌ها مربوط به کانی الکتروپرکسین هستند. به‌طور کلی، نمودار Q=Ca+Mg+Fe²⁺ و J=2Na که برای تشخیص انواع پیروکسین‌های سدیمی-کلسیمی و کلسیمی، همه پیروکسین‌های مورد بررسی در گستره ترکیبی Q=Ca+Mg+Fe²⁺ و J=2Na که برای تشخیص انواع پیروکسین‌های سدیمی-کلسیمی و کلسیمی، همه پیروکسین‌های مورد بررسی در گستره ترکیبی

Q=Ca+Mg+Fe²⁺ و J=2Na که برای تشخیص انواع پیروکسین‌های سدیمی-کلسیمی و کلسیمی، همه پیروکسین‌های مورد بررسی در گستره ترکیبی

Q=Ca+Mg+Fe²⁺ و J=2Na که برای تشخیص انواع پیروکسین‌های سدیمی-کلسیمی و کلسیمی، همه پیروکسین‌های مورد بررسی در گستره ترکیبی

Q=Ca+Mg+Fe²⁺ و J=2Na که برای تشخیص انواع پیروکسین‌های سدیمی-کلسیمی و کلسیمی، همه پیروکسین‌های مورد بررسی در گستره ترکیبی

Q=Ca+Mg+Fe²⁺ و J=2Na که برای تشخیص انواع پیروکسین‌های سدیمی-کلسیمی و کلسیمی، همه پیروکسین‌های مورد بررسی در گستره ترکیبی

Q=Ca+Mg+Fe²⁺ و J=2Na که برای تشخیص انواع پیروکسین‌های سدیمی-کلسیمی و کلسیمی، همه پیروکسین‌های مورد بررسی در گستره ترکیبی

Q=Ca+Mg+Fe²⁺ و J=2Na که برای تشخیص انواع پیروکسین‌های سدیمی-کلسیمی و کلسیمی، همه پیروکسین‌های مورد بررسی در گستره ترکیبی

Q=Ca+Mg+Fe²⁺ و J=2Na که برای تشخیص انواع پیروکسین‌های سدیمی-کلسیمی و کلسیمی، همه پیروکسین‌های مورد بررسی در گستره ترکیبی

Q=Ca+Mg+Fe²⁺ و J=2Na که برای تشخیص انواع پیروکسین‌های سدیمی-کلسیمی و کلسیمی، همه پیروکسین‌های مورد بررسی در گستره ترکیبی
جدول ۲ نتایج تجزیه ریزپردازی الکترونی پیروکسی‌ها در پریدویت‌ها. کاتیون‌ها بر حسب آم در واحده فرمولی (apfu) و بر اساس ۴ اکسیژن محاسبه شدند.

<table>
<thead>
<tr>
<th>ماده</th>
<th>Cpx1</th>
<th>Cpx2</th>
<th>Cpx3</th>
<th>Cpx4</th>
<th>Cpx5</th>
<th>Cpx1</th>
<th>Cpx2</th>
<th>Cpx3</th>
<th>Cpx4</th>
<th>Cpx5</th>
<th>Cpx1</th>
<th>Cpx2</th>
<th>Cpx3</th>
<th>Cpx4</th>
<th>Cpx5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>0.49</td>
<td>0.50</td>
<td>0.49</td>
<td>0.50</td>
<td>0.49</td>
<td>0.49</td>
<td>0.50</td>
<td>0.49</td>
<td>0.50</td>
<td>0.49</td>
<td>0.49</td>
<td>0.50</td>
<td>0.49</td>
<td>0.50</td>
<td>0.49</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
<td>0.12</td>
<td>0.11</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
<td>0.02</td>
<td>0.03</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>0.13</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>MgO</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>CaO</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.01</td>
</tr>
<tr>
<td>NiO</td>
<td>0.02</td>
</tr>
<tr>
<td>MgO</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>CaO</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.01</td>
</tr>
<tr>
<td>NiO</td>
<td>0.02</td>
</tr>
<tr>
<td>MgO</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>CaO</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
<td>0.35</td>
<td>0.37</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
<td>0.18</td>
<td>0.19</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.01</td>
</tr>
<tr>
<td>NiO</td>
<td>0.02</td>
</tr>
</tbody>
</table>

جدول ۳ نتایج تجزیه ریزپردازه الکترونی پیروکسی‌ها در پریدویت‌ها. کاتیون‌ها بر حسب آم در واحده فرمولی (apfu) و بر اساس ۴ اکسیژن محاسبه شدند.
<table>
<thead>
<tr>
<th>سم</th>
<th>مسپل 1</th>
<th>مسپل 2</th>
<th>مسپل 3</th>
<th>مسپل 4</th>
<th>مسپل 5</th>
<th>مسپل 6</th>
<th>مسپل 7</th>
<th>مسپل 8</th>
<th>مسپل 9</th>
<th>مسپل 10</th>
<th>مسپل 11</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.3</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.1</td>
</tr>
<tr>
<td>FeO</td>
<td>0.1</td>
</tr>
<tr>
<td>MgO</td>
<td>0.1</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
</tr>
<tr>
<td>CaO</td>
<td>0.1</td>
</tr>
<tr>
<td>Ni</td>
<td>0.1</td>
</tr>
<tr>
<td>Mg²⁺</td>
<td>0.1</td>
</tr>
<tr>
<td>Cr³⁺</td>
<td>0.1</td>
</tr>
<tr>
<td>Fe⁺⁺</td>
<td>0.1</td>
</tr>
<tr>
<td>Al³⁺</td>
<td>0.1</td>
</tr>
</tbody>
</table>

جدول 3 ادامه.
پیشرفتی و نمونه‌های گوناگونی در گروه استهلاک آلومینیم-کروم‌دار و در گستره پیروپنکس‌ها با افقی‌گذاری قرار داده شکل ۳ ت‌که این در حالی است که اساسینه‌های پوسته‌ی در گستره اسپِنال‌های مجموعه‌های چینه سان قرار داده شکل ۳ که این ادبیت بر گام‌های بودن و واقعیت آن به توالی پوسته‌های است.

زمین‌ده‌های پیروپنکس‌های دی‌پنتونی و گوناگونی در روزهای زمین‌ده‌هدن. سپس با استفاده از ماده‌ها به دست آمده از بالینی‌ها و فشار تشکیل فازهای دی‌پنتونی نهایی آنی، مقدار تحت‌الحمای دما و فشار تعیین می‌شود. بر اساس شواهد سنجشگری، روی کانی‌های آلیون-اسپینال و کلینپپوپنکس بهینه شرایط هم‌زیستی را در سنگ‌های پیروپنکسی منطقه مورد بررسی نشان دهنده.

دمسنجی ال‌پسینال: دمسنج ال‌پسینال بر پایه تبدیل‌های منجر در الپسینال است. در اینجا از روش فابری و رویکرد همکاران [۸] استفاده شد. ماده‌ها روش‌های [۳۷] به صورت زیر است:

\[
T(K) = (4250 \times Y_{Cr}^{Spl} + 1343) (\text{LnK}_D^0 + 1.825 \times Y_{Cr}^{Spl} + 0.571)
\]

\[L\text{mk}_D^0 = \text{LnK}_D - 4 \times Y_{Fe_{3+}}^{3+\text{Spl}}\]

\[K_D = (X_{\text{Mg}^{\text{III}}} \times X_{\text{Fe}_{2+}^{\text{III}}}) \times (X_{\text{Mg}^{\text{III}}} \times X_{\text{Fe}_{2+}^{\text{III}}})\]

برای روش رودبرد و همکاران [۱۸] است.

\[T(K) = (a 3480 + \beta 1018 - \gamma 1720 + 2400)(a 2.23 + \beta 2.56 - \gamma 3.08 - 1.47 + 1.987\text{LnK}_D)
\]

\[a = Cr(\text{Cr} + \text{Al} + \text{Fe}^{3+}); \beta = Al(\text{Cr} + \text{Al} + \text{Fe}^{3+}); \gamma = \text{Fe}^{3+}(\text{Cr} + \text{Al} + \text{Fe}^{3+})\]

مياگوین دماهای به دست آمده از این دو روش برای نمونه‌ها پوسته‌های ۷۰۰۰ درجه سانتی‌گراد در اینجا است.

دمسنجی کلینپپوپنکس-ارپورپنکس: این دمسنج برای پیروپنکس‌های همبسته به پایه توزیع مقدار استاتیک نمونه‌های جامد کلینپپوپنکس و ارپورپنکس است. در اینجا از دو روش وود و باروی [۳۹] و [۱۴۰] برای تعیین دما استفاده شد. معادله روش اول به صورت زیر است:

\[
\text{Cr#} = \text{Cr}(\text{Cr} + \text{Al})
\]

\[
\text{Cr#} = \text{Cr}(\text{Cr} + \text{Al})
\]

\[
\text{Cr#} = \text{Cr}(\text{Cr} + \text{Al})
\]
ترکیب شیمیایی کانی‌ها و دما-فشارسنجی پریدوبنتی‌های...

Contributions to Mineralogy and Petrology 139 (2000) 541-554.

BIOLOGY01-BIOLOGY01_002.html.