مقاله پژوهشی

شواهد باریت گرمایی در منطقه مشکان، شمالشرق سیبزوار: کانی شناسی، زمین‌شناسی و سیال‌های درگیر

مفهوم

1- کروه زمین‌شناسی، دانشگاه علوم، دانشگاه فردوسی مشهد، مشهد، ایران
2- کروه زمین‌شناسی و گروه پژوهشی اکتشاف ذخایر معدنی شرق ایران، دانشگاه علوم، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده: منطقه اکتشافی باریت مشکان در شمالشرق سیبزوار در استان خراسان رضوی واقع است. زمین‌شناسی منطقه شامل واحدهای رسوبی کنگورپ، ماسه‌سنگ، اهلک با میان‌هایی شیل، شیل با میان‌هایی اسپارنت و واحدهای انششی داندریت و ترکیب آندزینی به سیس اصول است. باریت با پشت‌های پرکندن قفزا خالی، توده‌ای، سایر و صفحه‌ای در گچ‌هایی با رنگ‌هایی به رنگ‌ها

شواهد باریت گرمایی در منطقه مشکان، شمالشرق سیبزوار: کانی شناسی، زمین‌شناسی و سیال‌های درگیر

شیفره محمدی‌پور، آزاده ملک‌زاده شفروودی مهربانی 2م، مرجع جایگزینی مقدم

واژه‌های کلیدی: کانی شناسی، زمین‌شناسی، سیال‌های درگیر، باریت، مشکان، خراسان رضوی

شواهد باریت گرمایی در منطقه مشکان، شمالشرق سیبزوار: کانی شناسی، زمین‌شناسی و سیال‌های درگیر

شیفره محمدی‌پور، آزاده ملک‌زاده شفروودی مهربانی 2م، مرجع جایگزینی مقدم

واژه‌های کلیدی: کانی شناسی، زمین‌شناسی، سیال‌های درگیر، باریت، مشکان، خراسان رضوی

شواهد باریت گرمایی در منطقه مشکان، شمالشرق سیبزوار: کانی شناسی، زمین‌شناسی و سیال‌های درگیر

شیفره محمدی‌پور، آزاده ملک‌زاده شفروودی مهربانی 2م، مرجع جایگزینی مقدم

واژه‌های کلیدی: کانی شناسی، زمین‌شناسی، سیال‌های درگیر، باریت، مشکان، خراسان رضوی

شواهد باریت گرمایی در منطقه مشکان، شمالشرق سیبزوار: کانی شناسی، زمین‌شناسی و سیال‌های درگیر

شیفره محمدی‌پور، آزاده ملک‌زاده شفروودی مهربانی 2م، مرجع جایگزینی مقدم

واژه‌های کلیدی: کانی شناسی، زمین‌شناسی، سیال‌های درگیر، باریت، مشکان، خراسان رضوی
کانسارهایی در این پهنه فلزرازی در شمال شرق ایران است.
روش کار
در راستای دستیابی به اهداف مورد نظر، بررسی های صحراوی و تونل‌بندی از واحدهای سنگی و رگه‌ها در منطقه اکتشافی باریکی مشکان انجام شد. بیش از ۴۰ نمونه سنگی از منطقه مورد بررسی جمع آوری شد که این میان، ۲۴ مقطع نارک برای بررسی های سنگین‌گاری و ۱۰ مقطع نارک صیقلی و قطعه مداری است. نتایج دستگیری، نقشه زمین-تصویر و نقشه تونل‌بندی به وسیله ArcGIS محاسبه و تهیه گردید. به منظور اکتشاف‌های شیمیایی، ۱۰ نمونه زمین شیمیایی به روش خردسنجی سنگی کاتی‌سازی برداشت شده که این میان، ۹ نمونه به روش طیف‌سنجی جرمی با استفاده از مدل القایی (ICP-MS) برای عناصر معدنی و ۵ نمونه به روش عباسی‌گرمانی به منظور تفسیر زمین شیمیایی دقت تکانه (XRF) [۱۰] استفاده شد.

سنجی فلتورسنجی در دو رشته آتشی، سنجی قلاتورسنجی در دو رشته آتشی، سنجی فلتورسنجی در دو رشته آتشی و سنجی قلاتورسنجی در دو رشته آتشی (XRF) [۱۰] استفاده شد.

شکل ۱ جایگاه منطقه مشکان در شمال شرق ایران و راه‌های دسترسی به آن همراه با موقعیت کمربند ماده‌اندازی قلاتورسنجی-سنجی قلاتورسنجی.
شواهد باریت گرمایی در منطقه مشکان، شمال شرق سیبزوار ...

برای بررسی سیالات درگیر، تعداد 5 مقطع دوربینی از کانی‌های باریت، کوارتز و کلسیت به‌همه شد. آزمایش‌های لازم توسط یک دستگاه کندند و گرم کننده ساخت شرکت لیبنکم مدل 600 در دانشگاه فردوسی مشهد انجام شد.

دقت کار دستگاه در مراحل سرمایه‌گذاری و گرمایش کردن 1°C و گستره دمای دستگاه 190 تا 600 درجه سانتی‌گراد است.

مقادیر شوی در دارمانت HOKIEFLINCS-H2O-NaCl تعیین شده در سیستم اکسل-SPSS محاسبه شد. سپس، نمودارهای مناسب در نرم افزار افزار SPSS رسم شدند.

زمین‌شناسی ناحیه‌ای

پس از تحلیل و جایگزینی مجموعه افیونیتی سیبزوار و ادامه فروزان پوسته افیونیس نتوتینس سیبزوار، به زیر صفحه توران فعالیت‌های ماکمایی از اولین انسن آغاز شد و به دلیل نداوی فروزان پوسته افیونیس و همین آن اخیرین فراورده‌های ماکمایی آن تا پایداری پورفیری پیوست و شرکت کننده در اسفالتی کانی‌های فلوکس-سیبزوار شد. سنگ‌های ایستادگی و نفوذی کانی بر اساس بررسی های علمی [1] به سه گروه سنگ‌های آذرین حدود‌اتون، سنگ‌های اسیدی الیکس-پورفیری و سنگ‌های قلبی‌پورفیری می‌باشد-پورفیری بزرگ‌ترین قلبی‌پورفیری و شوشه در نظر گرفته شدید-سنگ‌های آذرین این کانی از انسن در جنوب (در نزدیکی افیونیتی

شکل 1 نقشه زمین‌شناسی-کانی‌سازی منطقه مشکان.

513

جرد 28 شماره 3، پاییز 1399

 DOI: 10.29252/ijcm.28.3.711
دکترسی و کانی ماسی

canical رگه‌ای باریک در منطقه کنترل گسیل داشته و راستای این رگه‌ها بیشتر شمال غربی جنوب شرقی است و تعداد کمی نزی راستای شمالی-جنوبی دارند. شیب رگه‌ها اغلب ۱۰ تا ۶۰ درجه به سمت جنوب و گاهی به سمت شمال است. عرض این رگه‌ها ۲ تا ۳۰ متر و طول اینها از ۱۰ تا ۱۰۰ متر متغیر است. سنگ میزان رگه‌ها بیشتر واحد کنگلورمای و کمتر واحد ماسی‌سنجی است.

دکترسانی در لبه رگه‌ها سیار محدود بوده و اغلب تا نواصع چند متری از رگه قابل دیده است. دکترسانی‌های لبه رگه شامل ارزیلیک (شکل ۳ ت)، سیلیسی (شکل ۳ ج) و کانی‌سنجی است. در واحد کنگلورمای، دکترسانی‌ها بیشتر قطع‌های این واحد از گذشتگی و تفاوت از نظر شدت دکترسی و جنس قطع‌های دیده نشده. گفتگی است که قطع‌های سیلیسی در این واحد بیشتر در دکترسانی هستند. دکترسانی ارزیلیک در لبه رگه و سنگ میزان کانی‌سنجی شناسایی شد. در این دکترسانی، قطع‌های ارزیلیک (شکل ۳ ت) و بیشتر (۱۰ تا ۱۵ درصد) به کانی‌های رسی (شکل ۳ ج) و کمتر (۳ تا ۵ درصد) به سرسپت تبدیل شده‌اند. دکترسانی سیلیسی شامل شکل‌گیری کوارتز هرمز به کانی‌سازی باریک

واحده تراکی آندرزیتی نیز گسترش بسیار کمی در غرب منطقه دارد (شکل ۲). ابن واحد بافت بورفیری نیز تراکی‌پی دارد و کانی‌های تشکیل دهنده آن شامل ۲۰ تا ۲۵ درصد پلاژیوکلاز و ۵ تا ۱۰ درصد فلدسپار‌های و.۸ تا ۱۰ درصد هورنلند هستند (شکل ۲ ب).

واحد کنگلورمایی بیشترین گسترش را در منطقه می‌سوزد. بررسی دارد (شکل ۲) و سنگ میزان اصلی کانی‌سنجی است. ابن واحد شمل قطب‌هایی با اندازه خصوصی ۵۰ سانتی‌متر و گرد شگفت خو با متون‌سیستم است (شکل ۳ ب). جنس قطع‌هایی واحد کنگلورمای متفاوت است و اغلب سیلیسی با گردی سپر سیئر خوب با منطقه چون اندیزیت و تراکی آندرزیت است. ابن واحد ماسی‌سنجی در شمال و جنوب منطقه گسترش یافته است (شکل ۲). ابن واحد به نگه قرمز تا نخودی بوده و بیشتر از کوارتز و کمتر کربنات و فلدسپار تشکیل شده است (شکل ۳ ت). همچنین، واحدی که به نگه ریز نخودی در شمال منطقه و سپس به شکلی ناهمگن به رنگ خاکستری تا سبز در شمال شرق و جنوب شرق منطقه رخ می‌دهد (شکل ۲).
شواهد باریت گرماپی در منطقه مشکان، شمال شرق سیبزوار

تشییع نمونه (شکل 4). در رگه‌های باریت، کوارتز، باریت دارای
بافت‌های پرکنده فضای خالی توده‌ای، صف‌های و شعاعی
است (شکل‌های 5 و 6). و همچنین به صورت رگه‌های در
شکستگی‌های واحد‌های گکلونولوژی‌ای دیده می‌شود. در بعضی
نمونه‌های دستی بی‌بازه‌های کانی باریت به صورت سورنی‌های
با اندازه‌ای 1 تا 2 سانتی‌متر دیده شد. باریت پیش از
درصد رگه‌ها را دربر گرفته است.

کانی‌ها	مرحله کانی سازی اولیه	مرحله تأخیری	زون اکسیدی
پیریت			
کوارتز			
باریت			
کلیسیت			
کانی رسی			
سپیسیت			
همانیت			
کونیت			
مالاکیت			
آژوریت			

شکل 4: توالی همبستگی کانی‌های سازی در منطقه اکتشافی باریت مشکان.

شکل 5: تفاوت‌های باریت با گونه دست‌پنجه از کانی‌های منطقه اکتشافی باریت مشکان. (الف) از دست‌پنجه رگه باریت در پاکی (ب) باریت با بافت شفافه
ای (پ) باریت با بافت صف‌هایی که توسط رگه کلیسیتی فلز شده (ت) باریت با بافت شعاعی (ت) باریت با بافت شفافه (چ) از رگه‌های اکتشافی به اکسید
رفع در واحد گکلونولوژی مالاکیتی. (ک) کانی سازی مالاکیتی در واحد گکلونولوژی که توسط رگه‌های کلیسیتی که توسط رگه‌های شفافه است. (خ) اکتشاف اکتشافی، همانیت و
گوتیت. اختصاصات: Cal = کلیسیت، Brt = باریت، Mlc = مالاکیت.
جدول 1 نتایج تجزیه نمونه‌های زمین شیمیایی مورد بررسی به روش XRF در منطقه‌های پایدار بافتگی

<table>
<thead>
<tr>
<th>Sample N</th>
<th>BaO</th>
<th>SO₄</th>
<th>SrO</th>
<th>MgO</th>
<th>CaO</th>
<th>Fe₂O₃</th>
<th>TiO₂</th>
<th>Cr²⁺</th>
<th>CuO</th>
<th>NiO</th>
<th>ZnO</th>
<th>SrSO₄</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>49217</td>
<td>1.28</td>
<td>0.67</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>49216</td>
<td>1.28</td>
<td>0.67</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>49215</td>
<td>1.28</td>
<td>0.67</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>49214</td>
<td>1.28</td>
<td>0.67</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>49213</td>
<td>1.28</td>
<td>0.67</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>49212</td>
<td>1.28</td>
<td>0.67</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>49211</td>
<td>1.28</td>
<td>0.67</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>49210</td>
<td>1.28</td>
<td>0.67</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>49209</td>
<td>1.28</td>
<td>0.67</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>49208</td>
<td>1.28</td>
<td>0.67</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.32</td>
<td>0.33</td>
<td>0.33</td>
</tr>
</tbody>
</table>

جدول 2 نتایج تجزیه نمونه‌های مورد بررسی به روش XRF در منطقه‌های پایدار بافتگی [برحسب درصد].
زمین شیمیایی رگه‌ها: مقدار مس و سرب به ترتیب از 2 تا 11 گرم در تن (با میانگین 5.5 گرم در تن) و 6 تا 90 گرم در تن (با میانگین 35.7 گرم در تن) است (جدول 2). بیشترین مقدار مس مربوط به حضرت کالیا حساب می‌شود و آرزوهای رگه‌های سر سیسی ساز و کمتر از 3٪. مقدار توانایی و کمتر از 29٪ در رگه‌ها بین 20 تا 48 گرم در تن (با میانگین 16.3 گرم در تن) می‌باشد. مقدار فرسوده در رگه‌ها بسیار کمتر از 1٪ است (جدول 2). همچنین مقدار آنتیویانوز در رگه‌ها بین 1 تا 45 گرم در تن و مقدار طلا کمتر از 5 میلی‌گرم در تن است (جدول 3).

سیال‌های درگیر
۲ نتایج تجزیه نمونه‌های زمین شیمیایی مورد نیاز برای مشکلات به روش ICP-OES (برحسب ppm)

<table>
<thead>
<tr>
<th>A-13C</th>
<th>A-12C</th>
<th>A-10C</th>
<th>A-06C</th>
<th>A-05C</th>
<th>A-04C</th>
<th>A-03C</th>
<th>A-02C</th>
<th>A-01C</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>19</td>
<td>28</td>
<td>23</td>
<td>19</td>
<td>15</td>
<td>12</td>
<td>7</td>
<td>5</td>
</tr>
<tr>
<td>0.7</td>
<td>0.4</td>
<td>0.3</td>
<td>0.2</td>
<td>0.1</td>
<td>0.05</td>
<td>0.05</td>
<td>0.03</td>
<td>0.03</td>
</tr>
</tbody>
</table>

جدول 2 نتایج تجزیه نمونه‌های زمین شیمیایی خرده سنگی منطقه باریت مشکات در روستای کاروان

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>کلی‌میزان</th>
<th>ثابت (C)</th>
<th>Th (C)</th>
<th>Th-ice (C)</th>
<th>(wt.%Ncl</th>
<th>شوری (gr/cm3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mb36</td>
<td>کارتون</td>
<td>15</td>
<td>244</td>
<td>198</td>
<td>6.5</td>
<td>0.89</td>
</tr>
<tr>
<td>Mb30</td>
<td>کارتون</td>
<td>20</td>
<td>270</td>
<td>248</td>
<td>7.3</td>
<td>0.87</td>
</tr>
<tr>
<td>Mb32</td>
<td>باریت</td>
<td>14</td>
<td>204</td>
<td>181</td>
<td>9.7</td>
<td>0.95</td>
</tr>
<tr>
<td>Mb38</td>
<td>باریت</td>
<td>14</td>
<td>168</td>
<td>143</td>
<td>10.1</td>
<td>1.02</td>
</tr>
<tr>
<td>Mb37</td>
<td>کلسیت</td>
<td>13</td>
<td>185</td>
<td>158</td>
<td>11.3</td>
<td>1.15</td>
</tr>
</tbody>
</table>

شکل 6 تصاویر میکروسکوپی از سیال‌های درگیر دنورای (LV) در اف (کارتون و ب) باریت.

شکل 7 تصاویر میکروسکوپی از سیال‌های درگیر دنورای (LV) در اف (کارتون و ب) باریت.
نمودارهای این عکس دمای همگن‌شدنگی ب) دمای آخرین ذوب بخش ب) مقادیر شوری و ت) چگالی سیال‌های درکری در رده‌های باریت منطقه باریت مشکان.

نتایج دمای ذوب‌شدنگی (T_{fm}) رابطه مستقیمی با ترکیب نمک موجود در سیال که سازی است. T_{fm} به دست آمده بیانگر حضور نمک‌های CaCl$_2$ و NaCl در سیال که سازی است.

درجه نهایی ذوب T_{fm} نیز مقادیر شوری را مشخص می‌کند. دمای نهایی ذوب برای کوارتز نسل اول 5-1-2 تا 5-2-6 درجه سانتی‌گراد برای کوارتز نسل دوم 7-5-6 تا 7-5-6 درجه سانتی‌گراد برای باریت 6-7-6 تا 6-7-6 درجه سانتی‌گراد و براي
شواهد باریت گرمایی در منطقه مشکان، شمال شرق سیزار ...

شکل 9 تمودار شوری-دمای همگن شدگی سیال‌های درگیر منطقه مشکان. روندهای ممکن تکامل سیال در تمودار دما-شوری برگرفته از مرجع [19] هستند (روند 1=مخلوط شدگی سیال A با سیال سردتر و شوری کمتر B, روندهای 2 و 3=مخلوط شدگی سیال A با سیال های دیگر با شوری مختلف ون دمای یکسان، روند 4=افراش شوری فاز بافیماده در اثر جوشش، روند 5=سیال سرد، روند 6=باریک شدگی میانی).

باهمایی سیال و روند 7=زراش میانی/سارهای سیال طی گرمایش.

برداشت
بر پایه بررسی های انجام شده در منطقه اکتشافی باریت مشکان، کانی‌سازی به صورت رگه‌ای (با راستای بیشتر شمال-غربی-جنوب شرقی و کمتر شمالی-جنوبی) در واحدهای رسوبی
نواحی باریت گرمایی در منطقه مشکان، شمال شرق سیستان ...

[20] Lecumberri-Sanchez P., Steel-MacInnis, M., Bodnar, R.J., “A numerical model to estimate trapping conditions of fluid inclusions that