شیمی کانی و دما-فشارسنجی متابازیت‌های نتوبروتروزوئیک پسین مجموعه دگرگونی آذرین جنوب دو جاه (جنوب شرق شاهرود)

مکان رضایی، م. محعد سلیمانی، حبیب الله قاسمی، ی. پاکدلانوی، لامبرینی

چکیده: مجموعه دگرگونی آذرین نتوبروتروزوئیک پسین در جنوب دو جاه یکی از مجموعه‌های پستی ایران در جنوب شرق شاهرود و در کرانه شمالی پهنه‌سخت‌تری ایران مرکزی واقع شده است. این مجموعه در بردارشده طیف ترکیبی گستردگان از سنگ‌های دگرگونی جون می‌باشد که سنگ‌های آذرین لومکروپتیک و بیکروپتیک، میزبان سنگ‌های شیمی‌کانی و دما-فشارسنجی پسین محسوب می‌شوند. سنگ‌های ماده متابازیت‌ها شامل سنگ‌های اتانیت‌زدی بایوپسی و توده‌های نفوذی کالکتریتیک که در ناحیه بارون بوده‌اند که در مسیر یک دگرگونی ناحیه‌ای ناحیه‌ای به شکل دو عنصری در داخل ناحیه‌ای در این مجموعه‌ها گسترده گردیده و شناسایی شده‌اند. بررسی‌های شیمی‌کانی، دما-فشارسنجی و پیوند‌های افزایشی در این مجموعه‌ها کنترل شده است. این مجموعه به‌طور مستقیم از مسیر بارون و بارون بودن یک نظام دگرگونی پسین ناحیه‌ای در رخداد کوه‌های کادمی‌ما در سرد زمینه‌های گدارنام‌های ایران در شیمی‌کانی و دما-فشارسنجی پسین محسوب می‌شود.

واژه‌های کلیدی: شیمی کانی; دما-فشارسنجی; متابازیت; نتوبروتروزوئیک، دو جاه; شاهرود

مقدمه

علت واقع شدن در کرانه شمالی کوه آذرین مرکزی دور بودن از مراکز جمعیتی و ناگزیری راه‌های ارتباطی، تاکنون جزیره عزت‌الدین 120000، جزیره مرزه [۱۱۱۱] و جزیره عزت‌الدین 120000، جزیره مرزه [۱۱۱۱] هیچ پژوهش علمی جامعی برای آن صورت نگرفته و بررسی این منطقه در قالب رساله دکتری نویسندگان اول مقاله، در نوع خود برای نخستین بار انجام شده است. مجموعه ترکیبی گستردگان از سنگ‌های شیمی‌کانی، دما-فشارسنجی پسین جنوب دو جاه طیف متسبیت، متاسبیت و متاسبیت‌ها شامل میزبان سنگ‌های نتوبروتروزوئیک پسین و بیکروپتیک شیمی‌کانی و دما-فشارسنجی پسین محسوب می‌شوند. شیمی‌کانی و دما-فشارسنجی پسین مجموعه دگرگونی آذرین می‌باشد که سنگ‌های آذرین لومکروپتیک و بیکروپتیک، میزبان سنگ‌های شیمی‌کانی و دما-فشارسنجی پسین محسوب می‌شوند. سنگ‌های ماده متابازیت‌ها شامل سنگ‌های اتانیت‌زدی بایوپسی و توده‌های نفوذی کالکتریتیک که در ناحیه بارون بوده‌اند که در مسیر یک دگرگونی ناحیه‌ای ناحیه‌ای به شکل دو عنصری در داخل ناحیه‌ای در این مجموعه‌ها گسترده گردیده و شناسایی شده‌اند. بررسی‌های شیمی‌کانی، دما-فشارسنجی و پیوند‌های افزایشی در این مجموعه‌ها کنترل شده است. این مجموعه به‌طور مستقیم از مسیر بارون و بارون بودن یک نظام دگرگونی پسین ناحیه‌ای در رخداد کوه‌های کادمی‌ما در سرد زمینه‌های گدارنام‌های ایران در شیمی‌کانی و دما-فشارسنجی پسین محسوب می‌شود.

rezaieomzhgan@gmail.com

توپونیمی مسئول، لقب: ۱۸۸۴۹۱۰۱۸۳۸۷۳، پست الکترونیکی:
گزارندهای میپیلویتی بر روی داننده تفکرها نیز شامل است. میکاسیست، گورنت شیست، کریتونید شیست، گنیس و گوارینهای هستند. در شرایط اوج دگرگونی میکاسیست، شواهد گرانت زایی سیر دیده می‌شود. شواهد گرانت و گوارنی در این مجموعه تیره دگرگونی نیز از سنگ‌های آذرین می‌باشد.

مجموعه دگرگونی آذرین جنوب دو چاه در ۱۶۰ کیلومتری جنوب شرق شهرود و در کرانه شمالی یوپه ایران مرکزی واقع است (شکل ۱). این منطقه دارای سنگ‌های کاسیستهای دگرگونی‌شده، اثری و منگنزی که در خیال می‌باشد. در برخی مناطق از سنگ‌های آذرین نوپرورشتیک پسین شمار خط و گاوبندیت و بی‌پرور از سنگ‌های آذرین می‌باشد. در منطقه جنوب دو چاه، سنگ‌هایی که در این مطالعه در محله به صورت دسترسی، بی‌پرور و میپیلویت، گورنتیه و

بر این اساس، در این پژوهش سعی شد تا با استفاده شواهد صحرایی، بررسی‌های سنگ‌نگاره و نتایج شیمی‌کمی‌ها در سازواری حاکم بر دگرگونی منابعی‌های نوپرورشتیک‌پسین مجموعه دگرگونی - آذرین جنوب دو چاه به دقت ارزیابی شود.

زمن‌شناسی عمومی منطقه

مجموعه دگرگونی آذرین جنوب دو چاه در ۱۶۰ کیلومتری جنوب شرق شهرود و در کرانه شمالی یوپه ایران مرکزی واقع است (شکل ۱). این منطقه در محله به صورت دسترسی، بی‌پرور و میپیلویت، گورنتیه و

بر این اساس، در این پژوهش سعی شد تا با استفاده شواهد صحرایی، بررسی‌های سنگ‌نگاره و نتایج شیمی‌کمی‌ها در سازواری حاکم بر دگرگونی منابعی‌های نوپرورشتیک‌پسین مجموعه دگرگونی - آذرین جنوب دو چاه به دقت ارزیابی شود.

زمن‌شناسی عمومی منطقه

مجموعه دگرگونی آذرین جنوب دو چاه در ۱۶۰ کیلومتری جنوب شرق شهرود و در کرانه شمالی یوپه ایران مرکزی واقع است (شکل ۱). این منطقه در محله به صورت دسترسی، بی‌پرور و میپیلویت، گورنتیه و

بر این اساس، در این پژوهش سعی شد تا با استفاده شواهد صحرایی، بررسی‌های سنگ‌نگاره و نتایج شیمی‌کمی‌ها در سازواری حاکم بر دگرگونی منابعی‌های نوپرورشتیک‌پسین مجموعه دگرگونی - آذرین جنوب دو چاه به دقت ارزیابی شود.

زمن‌شناسی عمومی منطقه

مجموعه دگرگونی آذرین جنوب دو چاه در ۱۶۰ کیلومتری جنوب شرق شهرود و در کرانه شمالی یوپه ایران مرکزی واقع است (شکل ۱). این منطقه در محله به صورت دسترسی، بی‌پرور و میپیلویت، گورنتیه و
واحدهای سنگی پس از نیتروپروتوکسی پسین (واحدهای بوشانده) مجموعه دقیقی آذرین دو دهه) شامل توالی رسوبی- تخریبی به سی ریاس پسین- زوراسیک پیشین است که با کانگلورای قاعده‌ای جنرالی شروع شده و با توالی به نسبت شخصی مهیج است. شیل، آهک‌هایی و اشهری ادامه می‌پذیرد. در این بنا، روانه‌های بزرگی پاره‌ای تری، توده‌های کوچک گاری، دایک‌های دیبارا و اشکال‌های با ترکیب بزرگی به صورت میان‌رده رخ می‌دهد. میان‌رده-
روش بررسی
پدیده‌ای از تغییرات فیزیکی مراقب می‌شود که در سطح سیلیسی پیش‌آمده می‌شود. این پدیده‌ها به طور کلی در مراحل مختلف مورد بررسی قرار می‌گیرند. در این مطالعه، پدیده‌هایی از تغییرات فیزیکی و شیمیایی در سطح سیلیسی‌های مختلف بررسی می‌شود. این پدیده‌ها شامل تغییرات در شکل، اندازه، شکل و سطح سیلیسی‌ها می‌باشند.

گزارش‌های مختلف در مورد نفوذ قرار گرفتگی است. با توجه به شواهد چندندانه و نتایج ساختاری، به مکانیزمی از نظر هیدرولیک و شیمیایی پایان داده می‌شود. این پدیده‌ها به شکل‌های مختلفی در سطح سیلیسی‌ها به وسیله گازهای مختلفی مانند کربن دیاکسید و آب به وجود می‌آیند.

مشخصات سیلیسی سطح سیلیسی به مدت 10 سال در یک متر متغیر در سطح سیلیسی به شکل‌های مختلف پدیده می‌شود. این پدیده‌ها به مکانیزمی از نظر هیدرولیک و شیمیایی پایان داده می‌شود. این پدیده‌ها به شکل‌های مختلفی در سطح سیلیسی‌ها به وسیله گازهای مختلفی مانند کربن دیاکسید و آب به وجود می‌آیند.

نتایج
نتایج دسته‌بندی‌های گفته شده، نشان می‌دهد که پدیده‌هایی از تغییرات فیزیکی در سطح سیلیسی مورد بررسی قرار می‌گیرند. این پدیده‌ها شامل تغییرات در شکل، اندازه، شکل و سطح سیلیسی‌ها می‌باشند. این پدیده‌ها به شکل‌های مختلفی در سطح سیلیسی‌ها به وسیله گازهای مختلفی مانند کربن دیاکسید و آب به وجود می‌آیند.

نتایج
نتایج دسته‌بندی‌های گفته شده، نشان می‌دهد که پدیده‌هایی از تغییرات فیزیکی در سطح سیلیسی مورد بررسی قرار می‌گیرند. این پدیده‌ها شامل تغییرات در شکل، اندازه، شکل و سطح سیلیسی‌ها می‌باشند. این پدیده‌ها به شکل‌های مختلفی در سطح سیلیسی‌ها به وسیله گازهای مختلفی مانند کربن دیاکسید و آب به وجود می‌آیند.

نتایج
نتایج دسته‌بندی‌های گفته شده، نشان می‌دهد که پدیده‌هایی از تغییرات فیزیکی در سطح سیلیسی مورد بررسی قرار می‌گیرند. این پدیده‌ها شامل تغییرات در شکل، اندازه، شکل و سطح سیلیسی‌ها می‌باشند. این پدیده‌ها به شکل‌های مختلفی در سطح سیلیسی‌ها به وسیله گازهای مختلفی مانند کربن دیاکسید و آب به وجود می‌آیند.

نتایج
نتایج دسته‌بندی‌های گفته شده، نشان می‌دهد که پدیده‌هایی از تغییرات فیزیکی در سطح سیلیسی مورد بررسی قرار می‌گیرند. این پدیده‌ها شامل تغییرات در شکل، اندازه، شکل و سطح سیلیسی‌ها می‌باشند. این پدیده‌ها به شکل‌های مختلفی در سطح سیلیسی‌ها به وسیله گازهای مختلفی مانند کربن دیاکسید و آب به وجود می‌آیند.
شکل ۳ تصویری از ویرگ‌های بارز منابع‌های مجموعه دگرگویی-آذرین جنوب دوزه: اف - ساخت بادامکی برجامانیه از سنگ مادربازالی در منابع‌های ب و ب - همراهی منابع‌های کریتیها و وجود میان‌لایه‌های کریتیها در بین آنها که نشانگر تنش‌پرکشی بارالهای مادربازالی در محیط آبی است. ت - دایک دیپاپی قطب کننده بیوانتی گرازه‌ها (دید به سمت شمال شرقی). ث - چیه‌های با مقیاس مارکوسکوپی در آمپیلوپولیه (دید به سمت شمال جنوبی). ج - چینه‌های مرورسکوپی در شیستهای سیزر، د - خ - به ترتیب خطداری منشی، عدسی‌های سیلیسی به شکل سیگما و بودین شدگی رگ‌های سیلیسی موجود در آمپیلوپولیه که نشان‌دهنده فرآیند مایوکروست‌ها در بهره‌های بریش‌گونه است.

شکل ۴ تصاویری میکروسکوپی از ویرگ‌های بارز منابع‌های مجموعه دگرگویی-آذرین جنوب دوزه (در نور قطعی، نور قطعی متقاطع، XPL).

الف - گابرونوردی اولیه به عنوان سنگ مادربازالی منابع‌های ب. بکتونولیت شیست و چینه‌های نمایان آن. پ - ایبیدوت اکتینولیت شیست.

جدول 1 نتایج آنالیز ماکروپروب آمپوله مربوط به یک مجموعه جنوب دوچه

<table>
<thead>
<tr>
<th>عنوان</th>
<th>آمپوله</th>
<th>کارت آمپوله</th>
</tr>
</thead>
<tbody>
<tr>
<td>ناک</td>
<td>دوچه</td>
<td>دوچه</td>
</tr>
<tr>
<td>Mg</td>
<td>Mg</td>
<td>Mg</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MnO</td>
<td>MnO</td>
<td>MnO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>H2O</td>
<td>H2O</td>
<td>H2O</td>
</tr>
<tr>
<td>Si</td>
<td>Si</td>
<td>Si</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
<tr>
<td>MgO</td>
<td>MgO</td>
<td>MgO</td>
</tr>
<tr>
<td>CaO</td>
<td>CaO</td>
<td>CaO</td>
</tr>
<tr>
<td>Na2O</td>
<td>Na2O</td>
<td>Na2O</td>
</tr>
<tr>
<td>K2O</td>
<td>K2O</td>
<td>K2O</td>
</tr>
<tr>
<td>SiO2</td>
<td>SiO2</td>
<td>SiO2</td>
</tr>
<tr>
<td>TiO2</td>
<td>TiO2</td>
<td>TiO2</td>
</tr>
<tr>
<td>Al2O3</td>
<td>Al2O3</td>
<td>Al2O3</td>
</tr>
<tr>
<td>Fe2O3</td>
<td>Fe2O3</td>
<td>Fe2O3</td>
</tr>
<tr>
<td>FeO</td>
<td>FeO</td>
<td>FeO</td>
</tr>
</tbody>
</table>
جدول ۲ نتایج تجزیه رژیم‌داری گرانیت‌های متابازیت‌های مجموعه جنوب دوژه.

<table>
<thead>
<tr>
<th>نماد</th>
<th>کانال</th>
<th>داخلی</th>
<th>لبه</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO$_2$</td>
<td>۶۷.۱۶</td>
<td>۶۷.۱۶</td>
<td>۶۷.۱۶</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>۰.۱۴</td>
<td>۰.۱۴</td>
<td>۰.۱۴</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>۱۶.۲۱</td>
<td>۱۶.۲۱</td>
<td>۱۶.۲۱</td>
</tr>
<tr>
<td>FeO</td>
<td>۸.۳۹</td>
<td>۸.۳۹</td>
<td>۸.۳۹</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
</tr>
<tr>
<td>MgO</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
</tr>
<tr>
<td>CaO</td>
<td>۵.۱۷</td>
<td>۵.۱۷</td>
<td>۵.۱۷</td>
</tr>
<tr>
<td>MgO</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>۱۶.۲۱</td>
<td>۱۶.۲۱</td>
<td>۱۶.۲۱</td>
</tr>
<tr>
<td>FeO</td>
<td>۸.۳۹</td>
<td>۸.۳۹</td>
<td>۸.۳۹</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
</tr>
<tr>
<td>MgO</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
</tr>
<tr>
<td>CaO</td>
<td>۵.۱۷</td>
<td>۵.۱۷</td>
<td>۵.۱۷</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>۶۷.۱۶</td>
<td>۶۷.۱۶</td>
<td>۶۷.۱۶</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>۰.۱۴</td>
<td>۰.۱۴</td>
<td>۰.۱۴</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>۱۶.۲۱</td>
<td>۱۶.۲۱</td>
<td>۱۶.۲۱</td>
</tr>
<tr>
<td>FeO</td>
<td>۸.۳۹</td>
<td>۸.۳۹</td>
<td>۸.۳۹</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
</tr>
<tr>
<td>MgO</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
</tr>
<tr>
<td>CaO</td>
<td>۵.۱۷</td>
<td>۵.۱۷</td>
<td>۵.۱۷</td>
</tr>
<tr>
<td>MgO</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>۱۶.۲۱</td>
<td>۱۶.۲۱</td>
<td>۱۶.۲۱</td>
</tr>
<tr>
<td>FeO</td>
<td>۸.۳۹</td>
<td>۸.۳۹</td>
<td>۸.۳۹</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
</tr>
<tr>
<td>MgO</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
</tr>
<tr>
<td>CaO</td>
<td>۵.۱۷</td>
<td>۵.۱۷</td>
<td>۵.۱۷</td>
</tr>
<tr>
<td>SiO$_2$</td>
<td>۶۷.۱۶</td>
<td>۶۷.۱۶</td>
<td>۶۷.۱۶</td>
</tr>
<tr>
<td>TiO$_2$</td>
<td>۰.۱۴</td>
<td>۰.۱۴</td>
<td>۰.۱۴</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>۱۶.۲۱</td>
<td>۱۶.۲۱</td>
<td>۱۶.۲۱</td>
</tr>
<tr>
<td>FeO</td>
<td>۸.۳۹</td>
<td>۸.۳۹</td>
<td>۸.۳۹</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
</tr>
<tr>
<td>MgO</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
</tr>
<tr>
<td>CaO</td>
<td>۵.۱۷</td>
<td>۵.۱۷</td>
<td>۵.۱۷</td>
</tr>
<tr>
<td>MgO</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
</tr>
<tr>
<td>Al$_2$O$_3$</td>
<td>۱۶.۲۱</td>
<td>۱۶.۲۱</td>
<td>۱۶.۲۱</td>
</tr>
<tr>
<td>FeO</td>
<td>۸.۳۹</td>
<td>۸.۳۹</td>
<td>۸.۳۹</td>
</tr>
<tr>
<td>MnO</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
<td>۰.۱۸</td>
</tr>
<tr>
<td>MgO</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
<td>۴.۴۱</td>
</tr>
<tr>
<td>CaO</td>
<td>۵.۱۷</td>
<td>۵.۱۷</td>
<td>۵.۱۷</td>
</tr>
</tbody>
</table>
همزمان\n
نشان میدهد که این دو پارامتر رفتار تقیباً متقابلی دارند. بعنی کلیسی و آهن میتوانند در ساختار گازنده‌های موجود در متابای‌های مورد بررسی به صورت محلول جانبی تادالی کاتیونی انجام دهد. در تغییرات آنها دیده می‌شود به طوری که $X_{X_{Mg}}$ کاهش یافته، $X_{X_{Fe}}$ و $X_{X_{Ca}}$ ملاحظه بررسی داده. اغلب چنین رفتاری نتیجه افزایش دما و فشار می‌باشد. تغییرات X_{Ca} کاهش محسوسی از مرکز به سمت لبه نشان می‌دهد. بررسی ترکیب امپیبولهای متابای‌های مجموعه درگوگونی–آدرین چگونه و چه در آن آل – نمودار Si نسبت به Ti برای مشخص نمودن آلزموله‌های درگوگونی [18]، $BCa+BNa$ نسبت به Si برای تفکیک انواع $Mg/(Mg+Fe)^{2+}$ نسبت به Si برای تغییر انواع Al^{III} نسبت به Si برای تشخیص نوع امپیبولهای درگوگونی و آدرین.

شکل 5 ترکیب امپیبولهای متابای‌های مجموعه درگوگونی–آدرین چگونه و چه در آن آل – نمودار Si نسبت به Ti برای مشخص نمودن آلزموله‌های درگوگونی [18]، $BCa+BNa$ نسبت به Si برای تفکیک انواع $Mg/(Mg+Fe)^{2+}$ نسبت به Si برای تغییر انواع Al^{III} نسبت به Si برای تشخیص نوع امپیبولهای درگوگونی و آدرین.

شکل 6 نمودار مثلثی $Ab-Or-An$ برای تعبیر طیف ترکیبی بازیوکلاژهای مورد بررسی وابسته به متابای‌های مجموعه آدرین.
کابینیونی افزوده می‌شود [۲۷]. مقدار AlIV نیز تابع دمای کلیه‌های آمفیپول-دوکره، آمفیپول‌ها، ترکیب پری‌الم-سپس-گریس (Pry-Alm-Sps)-Grs H در سطح پانوراما. همچنین مقدار ترکیب موجود در آمفیپول‌ها نیز می‌تواند به عنوان یک دمای شامل تشکیل آن‌ها در گستره وسیعی از شرایط دما و فشار در هرگاهی. روایت تجربی پایه‌دار بر روی روش‌های ترمودینامیکی برای برآورد دما و فشار می‌تواند یک راه‌حل کلیدی باشد که از آن جمله می‌توان به دانست. فشار سنجی یکی از ترکیب آمفیپول-پراکلر و همچنین دما و فشارسنجی بر اساس ترکیب آمفیپول اشاره کرد.

فشارسنجی آمفیپول: آمفیپول‌های اصلی استفاده از آمفیپول‌های موجود در گستره وسیعی از دماها (۴۰۰ تا ۱۱۵۰ درجه سانتی‌گراد) و فشارها (۱ تا ۳۳ کیلوبار) پایدار است. [۲۸] همچنین این کانال به دلیل محدودیت‌های معنی‌داری که در اثر نظر بال‌کریکی و شعاع بینی، عناصر مختلفی را می‌تواند ساختار حاوی جای دهد. بین سازی آمفیپول‌ها، عناصری سخت در ویژه واردار که نسبت به تغییر فشار، دما و گریدن‌دگی اکسیژن حساس هستند [۲۹]. بنابراین با توجه به مقادیر این عناصر، می‌توان به شرایط دما و فشار تشکیل این کانال پی برد.

فشارسنجی آمفیپول: از روش‌های موجود برای دمایسنجی می‌توان به دمایسنجی برای تغییرات AlIV نسبت به استفاده Ti در آمفیپول‌ها وابسته به دمایش کرده. مقدار AlIV در آمفیپول‌ها نیز با شعاع فشار آلفا می‌باشد. مقدار AlIV افزوده می‌شود [۳۰]. عوامل سبک بالا و دما از نظر بار بال‌کریکی و شعاع بینی، عناصر مختلفی را می‌تواند ساختار حاوی جای دهد. بین سازی آمفیپول‌ها، عناصری سخت در ویژه واردار که نسبت به تغییر فشار، دما و گریدن‌دگی اکسیژن حساس هستند [۲۹]. بنابراین با توجه به مقادیر این عناصر، می‌توان به شرایط دما و فشار تشکیل این کانال پی برد.
دما - فشار (شکل‌های ۸ و ۹) تغییر کرده است. خلاصه‌ای از میانگین فشارهای محاسبه شده با استفاده از روش‌های فشارسنجی متشکل، برای متالیت‌های مجموعه جنوب دو چاه در جدول ۴ ارائه شده است.

امفیبولیت‌ها در فشارهای ۴ تا ۹ کیلوبار و گارنت امفیبولیت‌ها در فشارهای ۷ تا ۱۰ کیلوبار تشکیل شده‌اند (شکل ۹) که با شرایط متغیر تشکیل این سنگ‌ها همخوانی دارد. در واقع، ترکیب امفیبولیت‌ها همسو با روند درگذشته و تغییرات شرایط

![Graph 1](image1.png)

الف

شکل ۸ موقعیت ترکیبی امفیبولیت‌های متالیت‌های مجموعه درگذشته -آذین در جنوب دو چاه در الف - نمودار تغییرات Si نسبت به Ti نشان می‌دهد [۲۴].

- نمودار Ti IV نسبت به AI IV، که روند افزایش دمای درگذشته از نسبت سبز به امفیبولیت در آن به طور کامل نمایان است.

![Graph 2](image2.png)

ب

شکل ۹ نمودار Fe۳+Fe۲+Mg نسبت به AI نشان می‌دهد [۶] که فشار تشکیل متالیت‌های مجموعه درگذشته دو چاه را نشان می‌دهد.

جدول ۴ میانگین فشار محاسبه شده برای تشکیل متالیت‌های جنوب دو چاه با استفاده از روش‌های مرسوم فشارسنجی امفیبولیت

<table>
<thead>
<tr>
<th>روش فشارسنجی</th>
<th>رابطه فشارسنجی</th>
<th>(kbar)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[۲۱]</td>
<td>P (+3kbar) = -3.92+5.03Al</td>
<td>۶۶</td>
</tr>
<tr>
<td>[۲۴]</td>
<td>P (+0.6kbar) = -3.01+4.76Al</td>
<td>۷</td>
</tr>
<tr>
<td>[۲۲]</td>
<td>P (+1kbar) = -4.76+5.64Al</td>
<td>۷۱</td>
</tr>
<tr>
<td>[۲۸]</td>
<td>P (+0.5kbar) = -3.46+4.23Al</td>
<td>۵۴</td>
</tr>
</tbody>
</table>
دما - فشار سنگی زوج آمفیبول-پلازیکولز
این نوع دما - فشارسنگی بر اساس توزیع بونهای Si, Al, K و Ca, Na تعادل کانی‌شناختی و ترمودینامیکی اجسام می‌شود. دماها و فشارهای برآورد شده برای متابلیتهای مجموعه جنب دگرگونی سنتیک و ۱۷/۲تا ۱۱ کیلوبار است (جدول ۵ و شکل 10). تغییرات کانی‌شناختی متابلیتهای در سیستم دگرگونی شامل تغییر تركیب آمفیبول‌ها از ترمولیت و آکیتونیت تا جرماکیت و

جدول ۵ نتایج دما - فشارسنگی زوج آمفیبول (هورنبلند) - پلازیکولز.

<table>
<thead>
<tr>
<th>نقطه</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
<td>5/5</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
<td>0/2</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>FeO⁺</td>
<td>8/14</td>
<td>8/14</td>
<td>8/14</td>
<td>8/14</td>
<td>8/14</td>
<td>8/14</td>
<td>8/14</td>
<td>8/14</td>
</tr>
<tr>
<td>MgO</td>
<td>15/32</td>
<td>15/32</td>
<td>15/32</td>
<td>15/32</td>
<td>15/32</td>
<td>15/32</td>
<td>15/32</td>
<td>15/32</td>
</tr>
<tr>
<td>MnO</td>
<td>0/11</td>
<td>0/11</td>
<td>0/11</td>
<td>0/11</td>
<td>0/11</td>
<td>0/11</td>
<td>0/11</td>
<td>0/11</td>
</tr>
<tr>
<td>CaO</td>
<td>10/89</td>
<td>10/89</td>
<td>10/89</td>
<td>10/89</td>
<td>10/89</td>
<td>10/89</td>
<td>10/89</td>
<td>10/89</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
<td>1/7</td>
</tr>
<tr>
<td>K₂O</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
</tr>
<tr>
<td>X₂O</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
</tr>
<tr>
<td>X۰۲۰</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
</tr>
<tr>
<td>X۰۲۰</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
<td>0/14</td>
</tr>
<tr>
<td>T (°C) HΒ₂</td>
<td>387/63</td>
<td>387/63</td>
<td>387/63</td>
<td>387/63</td>
<td>387/63</td>
<td>387/63</td>
<td>387/63</td>
<td>387/63</td>
</tr>
<tr>
<td>P(kb) HΒ₂</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
<td>2/7</td>
</tr>
</tbody>
</table>

نمودار تغییرات فشار نسبت به دما که براساس داده‌هایی به دست آمده از روش‌های دما - فشارسنگی شرح داده شده در متن مجازی و رسم شده‌اند.
الگوی پیشنهادی روند درگیری
گسترده دماه و فشارهای بسیار آمده برای متابایت‌های مجموعه جنب دوجابا گسترهای دما و فشار محاسبه شده برای متابایت‌های مجموعه‌های پیوستی هم‌وجور هم‌خویان خوبی دارد. برای امپرفیلیت‌های مجموعه شترکو دماهای 560 تا 711 درجه سانتی‌گراد و فشارهای 9 تا 11 کیلوبرد، برای مجموعه دوگیران دلماهای 486 تا 706 درجه سانتی‌گراد و فشارهای 6 تا 13 کیلوبرد، به‌دست آمده‌های اکنون دماهای 680 تا 860 درجه سانتی‌گراد و فشارهای 454 تا 682 درجه سانتی‌گراد و فشارهای 4 تا 13 کیلوبرد [6] بسته آمده انت. این گسترهای دما و فشار نشان می‌دهد که منطق پیوستی جنب دوگیران محاسبه شده است. برای امپرفیلیت‌های ناحیه‌ای معادل با رخساره شیب - سیز، تا امپرفیلیت‌های بلوه، شدن و تغییرات دما - فشار آنها با شیب (گرادیان) زمن‌گیری درگیری نوع بارور نشان داده می‌شود.

درکن کاتینیشن سیستم و سیستم‌های سنتی درگیری مجموعه جنب دوجابا نشان می‌دهد که منطقی‌های ماده آنها دارای طیف ترکیبی بسیار متنوع از ماده‌شناسی، شیمی، اکتشافات می‌باشد.
نوع پاروئین فشار متوسط تا بالا گونه‌ای شدنان. این رخ‌دادگی‌ها در ارتباط با کوه‌ها و کوه‌های پاکدامین در سرزمین‌های گونه‌ای ایران شورت قرفه است.

مراجع

Mineralogist 50(1965) 843 – 851.
[28] Johnson M. e., Rutherford. M. J., "Experimental calibration of the aluminum-in-