دوره 28، شماره 1 - ( 1-1399 )                   جلد 28 شماره 1 صفحات 158-141 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Ebrahimi M, Emadi F, Asiabanha A. Petrography and geochemistry of the Kahrizbeyg intrusion, southwest of Zanjan. www.ijcm.ir 2020; 28 (1) :141-158
URL: http://ijcm.ir/article-1-1424-fa.html
ابراهیمی محمد، عمادی فاطمه، آسیابانها عباس. سنگ‌نگاری و زمین شیمی توده نفوذی کهریزبیگ، جنوب غرب زنجان. مجله بلورشناسی و کانی شناسی ایران. 1399; 28 (1) :141-158

URL: http://ijcm.ir/article-1-1424-fa.html


1- دانشگاه زنجان
2- دانشگاه بین‌المللی امام خمینی(ره)
چکیده:   (2227 مشاهده)
توده­ نفوذی کهریزبیگ در شمال‌ غرب ایران و در پهنه ساختاری ایران مرکزی واقع بوده و داخل آهک­های کرتاسه نفوذ و موجب دگرگونی مجاورتی آنها شده است. همچنین، قطعات تخریبی این توده­ در بخش‌های کنگلومرایی سازند قرمز زیرین به سن الیگوسن آغازین قابل مشاهده هستند و بنابراین سن پس از کرتاسه­ و پیش از الیگوسن دارد. ترکیب این توده در گستره­ گرانیت تا گرانودیوریت متغیر بوده و حجم عمده آن را گرانودیوریت تشکیل داده است. کانی‌های سنگ‌ساز اصلی آن شامل کوارتز، پلاژیوکلاز و فلدسپار قلیایی همراه با کانی‌های مافیک بیوتیت و آمفیبول و کانی­های فرعی اسفن، آپاتیت و کانی­های کدر هستند. کلریت و کلسیت نیز به عنوان کانی­های ثانویه وجود دارند. بافت غربالی، بافت اسفن چشمی، لخته­های مافیک، احاطه شدن بیوتیت توسط آمفیبول و بیوتیت­های تیغه­ای شواهد بافتی هستند که به احتمال بسیار بر اثر فرایند آمیختگی ماگمایی در سنگ‌های مورد بررسی ایجاد شده‌اند. فراوانی برونبوم­های مافیک ریزدانه در بخش‌هایی از این توده نیز این امر را تایید می‌کند. الگوی عناصر خاکی نادر بهنجار شده نسبت به کندریت برای سنگ‌های مورد بررسی به نسبت هموار بوده و دارای غنی‌شدگی از عناصر خاکی نادر سبک (LREE) نسبت به عناصر خاکی نادر سنگین (HREE) است. غنی‌شدگی LREEها نسبت به HREEها می‌تواند به‌دلیل درجه پایین ذوب بخشی، فراوانی LREE در خاستگاه و یا آلودگی ماگما به­ مواد پوسته‌ای باشد. در نمودارهای عنکبوتی، عناصر سنگ دوست درشت یون چون روبیدیم، پتاسیم، توریم و برخی عناصر خاکی نادر سبک نسبت به عناصر با شدت میدان بالا مانند Yb، Sm،Zr ،  Taو  Nbغنی‌شدگی نشان می‌دهند. بی هنجاری مثبت عناصر روبیدیم، توریم و پتاسیم می‌تواند ناشی از آمیختگی ماگماهای گوشته‌ای و پوسته‌ای و یا به دلیل آلایش ماگمای گوشته‌ای با سنگ‌های پوسته‌ای باشد. بی‌هنجاری منفی Nb-Ta و Ti می­تواند به دلیل فعالیت ماگمایی وابسته به فرایندهای فرورانش، کمبود این عناصر در خاستگاه و یا مشارکت پوسته در فرایندهای ماگمایی باشد. بر اساس بررسی‌های سنگ­شناسی و زمین شیمیایی، توده گرانیتوئیدی کهریزبیگ از نوع I و دارای ترکیب آهکی قلیایی و متاآلومین است. توده­ نفوذی کهریزبیگ در یک محیط کمان ماگمایی برآمده از فرورانش سنگ کره اقیانوسی نئوتتیس به زیر خردهقاره­ای ایران مرکزی، تشکیل شده‌ است.    
متن کامل [PDF 2183 kb]   (571 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] Alavi, M., "Sedimentary and Structural characteristics of the Paleo-Tethys remnants in northeastern Iran", Geological Society of America Bulletin, Vol: 103, (1391) p: 983-992. https://doi.org/10.1130/0016-7606(1991)103<0983:SASCOT>2.3.CO;2 [DOI:10.1130/0016-7606(1991)1032.3.CO;2]
2. [2] Esmaeili, D., "An investigation on the petrology and geochemistry of Douran and Moghanlu intrusions (Zanjan and Takab areas)", Petrology MSc. Thesis, University of Tehran, (1371). (in Persian)
3. [3] Emadi, F., "Petrology of the Shahbolaghi intrusion in comparison to that of Kahrizbeyg intrusion, west of Zanjan", Petrology MSc. Thesis, University of Zanjan, (1389) 123 p. (in Persian)
4. [4] Baluchi, S., "Petrology of the Sarv-e-Jahan igneous rocks, northwest of Abhar", Petrology MSc. Thesis, University of Zanjan, (1389) 113 p. (in Persian)
5. [5] Esmaeili, N., "Petrology of the Khoramdaragh igneous rocks, west of Soltanieh", Petrology MSc. Thesis, University of Zanjan, (1391) 91 p. (in Persian)
6. [6] Fakher Shafaii, E., "Petrology and geochemistry of Khakriz granitoid (S Zanjan), and its contact metamorphic aureole", Petrology MSc. Thesis, University of Zanjan, (1394) 100 p. (in Persian)
7. [7] Nabatian, G., Li, X.H., Honarmand, M. and Melgarejo, J.C., 2017. "Geology, mineralogy and evolution of iron skarn deposits in the Zanjan district, NW Iran: Constraints from U-Pb dating, Hf and O isotope analyses of zircons and stable isotope geochemistry", Ore Geology Reviews, Vol: 84, (2017) p: 42-66. [DOI:10.1016/j.oregeorev.2016.10.029]
8. [8] Moghadasi, S.J., Ebrahimi, M. and Mohammadi, F., "Mineralogy, geochemistry and genesis of Gozaldarreh iron skarn deposit, southeast Zanjan", Journal of Economic Geology, accepted. (in Persian)
9. [9] Lotfi, M., "1:100000 geological map of Mahneshan", Geological Survey and Mining Exploration of Iran, (1380).
10. [10] Alavi, M., Amidi, M., Tatavusian, Sh., Haghipour, A., Bolurchi, M.H., Aghanabati, A., Pliseh, G. and Hajian, J., "1:250000 geological map of Takab", Geological Survey and Mining Exploration of Iran, (1355).
11. [11] Emadi, F., Ebrahimi, M., Esmaeili, R., Aghamoradi, F. and Asiabanha, A., "Mineralogy and Petrography of the Kahrizbeyg intrusion, southwest of Zanjan", 20th National Symposium of Crystallography and Mineralogy, (1391) p: 892-897 (in Persian)
12. [12] Streckeisen, A, "To each plutonic rock its proper name", Earth-Science Reviews, Vol: 12(1), (1976) p: 1-33. [DOI:10.1016/0012-8252(76)90052-0]
13. [13] Baxter, S. and Feely, M., "Magma mixing and mingling textures in granitoid: examples from the Galway granite, Connemara, Ireland", Mineralogy and Petrology, Vol: 76(1-2), (2002) p: 63-74. [DOI:10.1007/s007100200032]
14. [14] Şahin, S.Y., "Geochemistry of mafic microgranular enclaves in the Tamdere quartz monzonite, south of Dereli/Giresun, Eastern Pontides, Turkey", Chemie der Erde-Geochemistry, Vol: 68(1), (2008) p: 81-92. [DOI:10.1016/j.chemer.2005.05.002]
15. [15] Temizel, I., "Petrochemical evidence of magma mingling and mixing in the Tertiary monzogabbroic stocks around the Bafra (Samsun) area in Turkey: Implications of coeval mafic and felsic magma interactions", Mineralogy and Petrology, Vol: 108(3), (2014) p: 353-370. [DOI:10.1007/s00710-013-0304-4]
16. [16] Browne, B.L., Eichelberger, J.C., Patino, L.C., Vogel, T.A., Uto, K. and Hoshizumi, H., "Magma mingling as indicated by texture and Sr/Ba ratios of plagioclase phenocrysts from Unzen volcano, SW Japan", Journal of volcanology and geothermal research, Vol: 154(1), (2006) p: 103-116. [DOI:10.1016/j.jvolgeores.2005.09.022]
17. [17] Humphreys, M.C., Blundy, J.D. and Sparks, R.S.J., "Magma evolution and open-system processes at Shiveluch Volcano: Insights from phenocryst zoning", Journal of Petrology, Vol: 47(12), (2006) p: 2303-2334. [DOI:10.1093/petrology/egl045]
18. [18] Kurum, S., Onal, A., Boztug, D., Sper, T. and Arslan, M., "Ar40/Ar39 age and geochemistry of the post-collisional Miocene Yamadag volcanics in the Arapkir area (Malatya Province), eastern Anatolia, Turkey", J. Asian. Earth Sci., Vol: 33, (2008) p: 229-251. [DOI:10.1016/j.jseaes.2007.12.001]
19. [19] Ruprecht, P., Bergantz, G.W., Cooper, K.M. and Hildreth, W., "The crustal magma storage system of Volcán Quizapu, Chile, and the effects of magma mixing on magma diversity", Journal of Petrology, Vol: 53(4), (2012) p: 801-840. [DOI:10.1093/petrology/egs002]
20. [20] Nelson, S.T. and Montana, A., "Sieved-texture plagioclase in volcanic rocks produced by rapid decompression", American Mineralogist, Vol: 77, (1992) p: 1242-1249.
21. [21] Stephen, T. and Nelson, A.M., "Sieve-textured plagioclase in volcanic rocks produced by rapid decompression", American Mineralogist, Vol: 77, (1992) p: 1242-1249.
22. [22] Shelley, D., "Igneous and metamorphic rocks under the microscope", Chapman and Hall, (1993) 445 p.
23. [23] Hibbard, M.J., "The magma mixing origin of mantled feldspars", Contribution to Mineralogy and Petrology, Vol: 76, (1981) p: 158-170. [DOI:10.1007/BF00371956]
24. [24] Didier, J., "The different types of enclaves in granites-Nomenclature", Enclaves and granite petrology, (1991).
25. [25] Hibbard, M.J., "Textural anatomy of twelve magma mixed granitic systems In Barbarin, B. and Didier, J., (Eds) Enclaves and Granite Petrology", Development in Petrology 13, Elsevier, (1991) 431-444.
26. [26] Kretz R., "Symbols for rock-forming minerals", American mineralogist, Vol: 68 (1983) p: 277-279.
27. [27] Burda, J., Gawęda, A. and Klötzli, U., "Magma hybridization in the Western Tatra Mts. granitoid intrusion (S-Poland, Western Carpathians)", Mineralogy and petrology, Vol: 103(1-4), (2011) p: 19-36. [DOI:10.1007/s00710-011-0150-1]
28. [28] Streckeisen, A. and Lemaitre, R.W., "A chemical approximation to the model QAPF classification of the igneous rock", Neu Jb Mineralogie Abhandlungen, Vol: 136, (1979) p: 169-206.
29. [29] Harker, A., "The natural history of igneous rocks", Macmillan, (1909). [DOI:10.2307/1777000]
30. [30] Wilson, M., "Igneous petrogenesis: A global tectonic approach", Unwin Hyman Ltd, (1989) 466 p. [DOI:10.1007/978-1-4020-6788-4]
31. [31] Irvine, T.N. and Baragar, W.R.A.P., "A guide to the chemical classification of the common volcanic rocks", Can. J. Earth Sci., Vol: 8, (1971) p: 523-548. [DOI:10.1139/e71-055]
32. [32] Miyashiro, A., "Tholeiitic volcanic rock series in island arcs and active continental margins", American Journal of Sciences, Vol: 274, (1974) p: 321-355. [DOI:10.2475/ajs.274.4.321]
33. [33] Peccerillo, A. and Taylor, S.R., "Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, northern Turkey", Contributions to mineralogy and petrology, Vol: 58(1), (1976) p: 63-81. [DOI:10.1007/BF00384745]
34. [34] Shand, S.J., "The Eruptive Rocks", Hafner Publishing Company, New York, John Wiley and son, (1943) 444 p.
35. [35] Nakamura, N., "Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites", Geochimica et Cosmochimica Acta, Vol: 38(5), (1974) p: 757-775. [DOI:10.1016/0016-7037(74)90149-5]
36. [36] Rollinson, H.R., "Using geochemical data: evaluation, presentation, interpretation", New York, John Wiley and Sons, (1993) 352 p.
37. [37] Zhou, L., Mab, C., and She, Z., "An Early Cretaceous garnet-bearing metaluminous A-type granite intrusion in the East Qinling Orogen, Central China: Petrological, mineralogical and geochemical constraints", Geoscience Frontiers, Vol: 3(5), (2012) p: 635-646. [DOI:10.1016/j.gsf.2011.11.011]
38. [38] Srivastava, R.K., Singh, R.K., "Trace element geochemistry and genesis of Precambrian sub-alkaline mafic dikes from the central Indian craton evidence for mantle metasomatism", Journal of Asian Earth Sciences, Vol: 23, (2004) p: 373-389. [DOI:10.1016/S1367-9120(03)00150-0]
39. [39] Thompson, R.N., "Magmatism of the British Tertiary volcanic province", Scott. J. Geol., Vol: 18, (1982) p: 49-107. [DOI:10.1144/sjg18010049]
40. [40] Glenn, A.G., "The influence of melt structure on trace element partitioning near the peridotite solidus", Contributions to Mineralogy and Petrology, Vol: 147, (2004) p: 511-527. [DOI:10.1007/s00410-004-0575-1]
41. [41] Sajona, F.G., Maury, R.C., Bellon, H., Cotton, T. and Defant, M., "High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga peninsula, western Mindanao (Philippines)", Journal of petrology, Vol: 37, (1996) p: 693-726. [DOI:10.1093/petrology/37.3.693]
42. [42] Harris, C., "The petrology of lavas and associated plutonic characteristics of collision zone magmatism. In: Cowards, M.P. and Reis, A.C. (Eds), Collision tectonics", Special Publication, Geological Society of London, Vol: 19, (1986) p: 67-81. [DOI:10.1144/GSL.SP.1986.019.01.04]
43. [43] Hongyan, G., Sun, M., Yuan, C., Xiao, W., Zhao, G., Zhang, L., Wong, K. and Fuyuan, W., "Geochemical, Sr-Nd and Zircon U-Pb-Hf isotopic studies of Late-Subduction", Chemical Geology, Vol: 266, (2009) p: 364-398. [DOI:10.1016/j.chemgeo.2009.07.001]
44. [44] Wu, F., Jahnb, B., Wildec, S.A., Lod, C.H., Yuie, T.F., Lina, Q., Gea, W. and Suna, D., "Highly fractionated I-type granites in NE China II: isotopic geochemistry and implications for crustal growth in the Phanerozoic", Lithos, Vol: 67, (2003) p: 191-204. [DOI:10.1016/S0024-4937(03)00015-X]
45. [45] Dostal, J., Church, B.N., Reynolds, P.H. and Hopkinson, L., "Eocene volcanism in the Buck Creek basin, central British Columbia (Canada): transition from arc to extensional volcanism", Journal of Volcanology and Geothermal Research, Vol: 170(1-3), (2001) p: 149-170. [DOI:10.1016/S0377-0273(00)00261-4]
46. [46] Nagudi, N.O., Koberl, C.H. and Kurat, G., "Petrography and geochemistry of the Sing granite, Uganda, and implication for its origin", Journal of African Earth Sciences, Vol: 35, (2003) p: 51-59.
47. [47] Shang, G.K., Satir, M., Siebel, W., Nasifa, E.N., Taubuld, H., Liegeoise, J.P. and Tchoua, F.M., "Geochemistry, Rb-Sr and Sm-Nd systematic: case of the Sangmelima region, Ntem complex, southern Cameroon", Journal of African Earth Sciences, Vol: 40(1-2), (2004) p: 61-79. [DOI:10.1016/j.jafrearsci.2004.07.005]
48. [48] Whalen, J.B., Currie, K. L. and Chappell, B. W., "A-type granites: geochemical characteristics, distribution and petrogenesis", Contribution to Mineralogy and Petrology, Vol: 95, (1987) p: 407-419. [DOI:10.1007/BF00402202]
49. [49] Chappell, B.W. and White, A.J.R., "I and S-type granites in the Lachlan Fold Belt", Trans R. Soc. Edinb. Earth Sci., Vol: 83, (1992) p: 1-26. [DOI:10.1017/S0263593300007720]
50. [50] Li, X.H., Li, Z.X., Li, W.X., Liu, Y., Yuan, C., Wei, G.J. and Qi, C.S., "U-Pb zircon, geochemical and Sr-Nd isotopic constraints on age and origin of Jurassic I and A-type granites from Central Guangdong. SE China: a major igneous event in response to foundering of a subducted flat-slab?", Lithos, Vol: 96, (2007) p: 186-204 [DOI:10.1016/j.lithos.2006.09.018]
51. [51] Pearce, J.A., Harris, N.B. and Tindle, A.G., "Trace element discrimination diagrams for the Tectonic interpretation of granitic rocks", Journal of Petrology, Vol: 25(4), (1984) p: 956-983. [DOI:10.1093/petrology/25.4.956]
52. [52] Roberts, M.P. and Clemens, J.D., "Origin of high-potassium, Calc-alkaline, I-type granitoids", Geology, Vol: 21(9), (1993) p: 825-828. https://doi.org/10.1130/0091-7613(1993)021<0825:OOHPTA>2.3.CO;2 [DOI:10.1130/0091-7613(1993)0212.3.CO;2]
53. [53] Muller, D. and Groves, D.I., "Potassic igneous rocks and associated gold-copper mineralization", Sec. Updated. Springer Verlag, (1997) 242 p.
54. [54] Bacon, C.R. and Druitt, T.H., "Compositional evolution of the zoned calc-alkaline magma chamber of Mount Mazama, Crater Lake, Oregon", Contributions to Mineralogy and Petrology, Vol: 98(2), (1988) p: 224-256. [DOI:10.1007/BF00402114]
55. [55] Hildreth, W. and Moorbath, S., "Crustal contributions to arc magmatism in the Andes of central Chile", Contributions to Mineralogy and Petrology, Vol: 98(4), (1988) p: 455-489. [DOI:10.1007/BF00372365]
56. [56] Tepper, J.H., Nelson, B.K., Bergantz, G.W. and Irving, A.J., "Petrology of the Chilliwack batholith, north Cascade, Washington: generation of calc-alkaline granitoids by melting of mafic lower crust with variable water fugacity", Contribution to Mineralogy and Petrology, Vol: 113(3), (1993) p: 333-351. [DOI:10.1007/BF00286926]
57. [57] Guffanti, M., Clynne, M.A. and Muffler, L.J., "Thermal and mass implications of magmatic evolution in the Lassen volcanic region, California, and minimum constraints on basalt influx to the lower crust", Journal of Geophysical Research: Solid Earth, Vol: 101(B2), (1996) p: 3003-3013. [DOI:10.1029/95JB03463]
58. [58] Vigneresse, J.L., "A new paradigm for granite generation", Transactions of the Royal Society of Edinburgh: Earth Sciences, Vol: 95, (2004) p: 11-22. [DOI:10.1017/S0263593300000882]
59. [59] Nekvasil, H., "Ascent of felsic magmas and formation of rapakivi", American Mineralogist, Vol: 76(7-8), (1991) p: 1279-1290.
60. [60] Vernon, R.H., 2004. "A Practical Guide to Rock Microstructure", Cambridge University Press: Chapter 3, (2004). [DOI:10.1017/CBO9780511807206]
61. [61] Vernon, R.H. and Paterson, S.R., 2008. "How late are K-feldspar megacrysts in granites?", Lithos, Vol: 104(1-4), (2008) p: 327-336. [DOI:10.1016/j.lithos.2008.01.001]
62. [62] Słaby, E., Galbarczyk-Gąsiorowska, L., Seltmann, R. and Müller, A., 2007. "Alkali feldspar megacryst growth: geochemical modelling", Mineralogy and Petrology, Vol: 89(1-2), (2007) p: 1-29. [DOI:10.1007/s00710-006-0135-7]
63. [63] Slaby, E., Seltmann, R., Kober, B., Müller, A., Galbarczyk-Gasiorowska, L. and Jeffries, T., 2007. "LREE distribution patterns in zoned alkali feldspar megacrysts from the Karkonosze pluton, Bohemian Massif--implications for parental magma composition", Mineralogical Magazine, Vol: 71, (2007) p: 155-178. [DOI:10.1180/minmag.2007.071.2.155]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بلورشناسی و کانی شناسی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb