روابط بافتی- شیمیایی کانی‌های آپاتیت- موناژیت- زنویم در کانسار آهن ± آپاتیت لکه-
سیاه (شمال شرقی بافک): شواهی از تکوین یک سامانه گرمابی

میثم قلی‌پور،* مهرداد برنجی،* ابراهیم طالع فاضل، و راتبسلاو هورایا

1- گروه زمین‌شناسی، دانشگاه علوم پایه، دانشگاه پلی‌تکنو‌لوجی ژاپن، ایران
2- دانشگاه میانی و اسلواکی، اسلواکی

(دریافت مقاله: 98/12/06، انتخابی: 98/07/21، حفظ: 98/12/26)

چکیده: کانسار آهن ± آپاتیت لکه‌سیاه در ایالت فلزبایی بافت- اسلوو- مانکی (ایران مرکزی) و در سنگ‌های میانی رایلی بزرگ قرار گرفته است. کانی‌های اصلی در این کانسار مگنتیت و آپاتیت هستند که با ورود موناژیت و زنویم به صورت میانی رایلی و شکستگی‌ها این دو کانی تشکیل شده‌اند. کانی‌ها با استفاده از روش‌های میکروسکوپی و تجزیه ریزکالکترونی بررسی شدند. نتایج نشان می‌دهد که برخی ایان آپاتیت اولیه هستند و اختلاف‌های زیادی از زاویه‌های تغییر و روشن هستند. به طوری که یک جفت تغییر آپاتیت غنی از میانی‌های موناژیت و زنویم ناحیه است. این نتایج با نظر زمین‌شناسی کانسر نادر است. این نتایج با نظر زمین‌شناسی کانسر نادر است. این کانسارهای آپاتیت- موناژیت- زنویم در موناژیت و عناصر نادر سنگین (LREE) در زنویم (HREE) در موناژیت و عناصر نادر سنگین (LREE) در زنویم

واژه‌های کلیدی: کانسارهای آکسید آهَن- آپاتیت، کانی‌های عناصر خاکی نادر، دگرتهیات، کانسار انقلاب- تنفسینی مجدد

مقدمه
کانسارهایی که تحت نظیر زمین‌شناسی کانسارهای آپاتیت- موناژیت- زنویم در تاریخ اقتصادی اکسید آهَن- مسئولین نیز در ایالت فلزبایی بافت- اسلوو- مانکی (ایران مرکزی) و در سنگ‌های میانی رایلی بزرگ قرار گرفته است. این نتایج با نظر زمین‌شناسی کانسارهای آپاتیت- موناژیت- زنویم در موناژیت و عناصر نادر سنگین (LREE) در زنویم (HREE) در موناژیت و عناصر نادر سنگین (LREE) در زنویم

barati@basu.ac.ir

*نویسنده مسئول، تلفن: 9819821544422، پست الکترونیکی: barati@basu.ac.ir
که می‌تواند جنبه اقتصادی داشته باشد. نسبت به اکتشاف و گسترش فعالیت‌های زیرساختی و استه به جوی اعضا خاکی نادر اقدام شود. وجود تعدادی کاسار و نشته موجب پتانسیل سیاسی بالای منطقه که از تغییرهای فراورده است، از این رو باید به مثلاب بیان شده و اینکه کاتی اپاپتی می‌تواند با عناوین کیک اولیه باید تکثیف کاتی اسکاکی نادر عمل کند. در این پژوهش حضور و ناحیه‌نگار تکثیف کاتی-های خاکی نادر در کاسار لکسیس به بررسی شد.

جاناکه زمین‌شناسی

خرد فره ایران مرکزی بخشی از سانه‌های کوهزایی آلپ-حیمالیا محصول می‌شود که از غرب به شرق به سه پهنه‌ساختاری اصلی لو، طبس و پیرازهای گسل تقسیم می‌شود [۱۲]. در این ناحیه، منطقه‌های کمکی شکل با ابعاد ۸۰×۱۰۰ کیلومتر به مان کمک زمین‌ساختی کاسمر-کرمان (KKTZ) و وجود دارد [۱۳] (شکل ۱).

![شکل ۱: نقشه ساختاری یک شرکتی مرکزی ایران و جاگاه‌پذیر به زمین‌ساختی کاسمر-کرمان و کاسار لکسیس در آن [۱۲]. (پیهمه SSZ، سندج-سرجان، CIZ، پشته ایران مرکزی و PB، قلمبعین پشت بادام).](image-url)

شورایها، آب خالص و سیال‌های اسیدی در گستره‌های تا ۶۰۰ درجه سانتی‌گراد و فشار ۵۰۰، تا ۱۰۰۰ دگرگونی می‌باشد. عامل اصلی گسترش فعالیت‌های زیرساختی و استه به جوی اعضا خاکی نادر اقدام شود. وجود تعدادی کاسار و نشته موجب پتانسیل سیاسی بالای منطقه که از تغییرهای فراورده است، از این رو باید به مثلاب بیان شده و اینکه کاتی اپاپتی می‌تواند با عناوین کیک اولیه باید تکثیف کاتی اسکاکی نادر عمل کند. در این پژوهش حضور و ناحیه‌نگار تکثیف کاتی-های خاکی نادر در کاسار لکسیس به بررسی شد.

جاناکه زمین‌شناسی

خرد فره ایران مرکزی بخشی از سانه‌های کوهزایی آلپ-حیمالیا محصول می‌شود که از غرب به شرق به سه پهنه‌ساختاری اصلی لو، طبس و پیرازهای گسل تقسیم می‌شود [۱۲]. در این ناحیه، منطقه‌های کمکی شکل با ابعاد ۸۰×۱۰۰ کیلومتر به مان کمک زمین‌ساختی کاسمر-کرمان (KKTZ) و وجود دارد [۱۳] (شکل ۱).

![شکل ۱: نقشه ساختاری یک شرکتی مرکزی ایران و جاگاه‌پذیر به زمین‌ساختی کاسمر-کرمان و کاسار لکسیس در آن [۱۲]. (پیهمه SSZ، سندج-سرجان، CIZ، پشته ایران مرکزی و PB، قلمبعین پشت بادام).](image-url)
انجام بررسی که انجام شده به شکل زیر است:

KKTZ

تفاوت کامپرسی پیشین در ایران مرکزی است و به دلیل متقاطع عوامل مختلف به یک منطقه مجزا در جنوب ایران مرکزی نظر گرفته می‌شود [14] که مهم‌ترین این دلایل عبارتند از: ۱) بر خلاف قطعه‌های همسایه، بیشتر بلوط و سندق‌های تپه‌برداری‌های ریزین و بالا و لایه‌های پیشین در راستای آن بیرونی‌زدگی دارد و ۲) سندق‌های آذرین از نظر Analytics گهگاهی توانایی ترسیم پیشین با استفاده از KKTZ BA و استراتگی کمکی و تصادفی قطعه‌های اثر و طبیعی وجود ندارد [13]. کاسار لکاسیه به‌طور کلی در منطقه آهن‌ریز در ناحیه باقی مانده می‌شود و یافته‌های این ناحیه باقی مانده از این KKTZ تأثیر بسزایی دارد.

زمین‌شناسی و کانترایی

منطقه لکاسیه در ۴۰ کیلومتری شمال‌شرقی شهرستان باقق در استان یزد واقع است. بر پایه نقشه زمین‌شناسی [15], ۱۲۰۰۰۰۰۰۰۰۰۰۰۰ پای‌آبی، اغلب رخ‌دهنده ان این منطقه استه به کامپرسی پیشین و بیشتر شامل روبی‌پیکر، زیر روی‌پیکر، دولومیت، ماسه سند و دایاک‌های دیاباسی است. این ناحیه روی‌پیکر اغلب به صورت جریان‌های آذرآوری، غداه و گنبد دیده می‌شود که میزان آن‌ها از چندین هستند [۲] (شکل ۲). مقطع تارک-سیفلی از کانترایی آهَن-آپنین به تهیه شد. پس از

روش بررسی

به وسیله فینال‌های کانترایی و شیمی‌کاتیک از تعداد ۴۵ مقطع تارک-سیفلی از کانترایی آهَن-آپنین به تهیه شد.
این سنجش‌ها بسیار ریز بلوک به‌ره به سرود سنگهای غنی از سلیس به‌ساز کالی‌های مانیفک دیده می‌شوند. با توجه به نسبت نسبی سنگهای فرسوده‌ای و کل‌های موجود در این ناحیه، در اینجا مطرح شده است [17]. در برخی نقاط، شدت فرسوده‌های دریایی در این اثر تشکیل کالی‌های ترمولیت-اکتیولیت، کازیت و اپیدوم، سنگ سپر رنگ شده است [18]. ماده معنی‌جذب به صورت توده‌های عدسی شکل مغناطیسی میزبان رژیمی و محل بودن فصل آن تشکیل شده است. قسمت‌های سطحی نیز همانند، لیمونید و گویتی در اثر پدیده‌های هوازیگی ایجاد شده‌اند.

کاندایی آهن در 3 منطقه بررسی شده که بر اساس موقعیت خاصی‌گیری و به توجه به ابعاد آنها از ترتیب اول تا ثالث به‌رها است. 1 و 2 متری برخورد (شکل 1) [16].

شیمی‌کاتی‌ها

مغناطیسی مکتیک کالی اکسیدی معمول در سنگهای آدنی، ذرات کوچک و ربع داخل است به طور گسترده در اوتاه کاسکتی-IOACO4، FeO، Cr2O3، Al2O3 و MgO. در برخی از مکتیک‌های نهشته‌های 2 و 3 یافت ریز، دربره‌پشتی با سایر کالی‌های افسکی و غیر افسکی است (شکل 3). یا بجاگیری میکروکا دارد به‌طور کلی از ناحیه تا مادرید جنگال‌های زیر فضای بزرگ به‌کار گرفته شده‌است. میدانه و شکل کالی‌های خاص کالی‌های نادر چگونه آپاتیت محصول می‌شود (شکل 3). این کالی در برخورد

شکل 4. تقارنی از کاندایی آهن: آپاتیت لوکسولی شفاف تراشده کالیوکس، آپاتیت پلاستیک، مغناطیسی، یا بایوکسید با آفسکی، (PPL) تراشده کالیوکس، آپاتیت پلاستیک، مغناطیسی، یا بایوکسید با آفسکی، (PPL) رخ‌مندین توده‌های کالیوکس آهن در منطقه.

میزبان در دیده‌بینی تحت شري در ناحیه کالیوکس کالیوکس آهن در منطقه.

میکروسکوپی پلاستیکی از آپاتیت لوکسولی شفاف تراشده کالیوکس، آپاتیت پلاستیک، مغناطیسی، یا بایوکسید با آفسکی، (PPL) تراشده کالیوکس، آپاتیت پلاستیک، مغناطیسی، یا بایوکسید با آفسکی، (PPL) رخ‌مندین توده‌های کالیوکس آهن در منطقه.

میکروسکوپی پلاستیکی از آپاتیت لوکسولی شفاف تراشده کالیوکس، آپاتیت پلاستیک، مغناطیسی، یا بایوکسید با آفسکی، (PPL) تراشده کالیوکس، آپاتیت پلاستیک، مغناطیسی، یا بایوکسید با آفسکی، (PPL) رخ‌مندین توده‌های کالیوکس آهن در منطقه.
جدول 1 نتایج تجزیه ریکالکترونی کانی مگنتیت در کناسر لکسیا (برحس درصد وزنی).

<table>
<thead>
<tr>
<th>کانی</th>
<th>مکنتیت 1</th>
<th>مکنتیت 2</th>
<th>مکنتیت 3</th>
<th>مکنتیت 4</th>
<th>مکنتیت 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>0.13</td>
<td>0.14</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>FeO</td>
<td>0.15</td>
<td>0.16</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>MgO</td>
<td>0.08</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>CaO</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>V₂O₃</td>
<td>0.11</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>NiO</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.09</td>
<td>0.10</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
</tbody>
</table>

اماده جدول 2

<table>
<thead>
<tr>
<th>کانی</th>
<th>مکنتیت 1</th>
<th>مکنتیت 2</th>
<th>مکنتیت 3</th>
<th>مکنتیت 4</th>
<th>مکنتیت 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>0.13</td>
<td>0.14</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.14</td>
<td>0.15</td>
<td>0.16</td>
<td>0.15</td>
<td>0.14</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>FeO</td>
<td>0.15</td>
<td>0.16</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>MnO</td>
<td>0.12</td>
<td>0.13</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>MgO</td>
<td>0.08</td>
<td>0.09</td>
<td>0.08</td>
<td>0.08</td>
<td>0.08</td>
</tr>
<tr>
<td>CaO</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>V₂O₃</td>
<td>0.11</td>
<td>0.12</td>
<td>0.13</td>
<td>0.13</td>
<td>0.13</td>
</tr>
<tr>
<td>NiO</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.09</td>
<td>0.10</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
</tbody>
</table>

مگنتیت دیده می‌شود (شکل 3 الف). ترکیب شیمیایی کانی آپاکی با استفاده از روش ریکالکترونی انداره‌گیری و در جدول 2 ارائه شده است. تصاویر الکترونی پس پراکنده (BSE) از نقاط تارک - صلبی جذبیت بیشتری را در مورد توزیع فازهای ترکیبات شیمیایی و پستی و بلندی نمودن در اختیار قرار می‌دهد. این تصاویر دو بعدی هستند و نفوذ‌های آن در نقاطی از کانی اندازه‌گیری می‌شود که A (SiO₂) از 5 تا 10 درصد در میانه. آپاکی دارای فرمول عمومی A₃(Al₂O₃)Z است که جایگاه A از Eu²⁺، Fe⁺⁺ و Si⁴⁺ را می‌کند. جایگاه Z توسطREE جایگاثه X، با درصد بیشتری Mg²⁺ و REE از X و REE در یک مول با هم می‌دهند. تفاوت بین دو فاز Bیشتر ناشی از غلظت‌های متفاوت عناصر در آن هاست. با طوریکه مناطق روشنتر جرم اتمی سنگین‌تر نسبت به مناطق تیره‌تر دارند. در REE ها و نیز با انتقال الکترون‌های Bیشتری، cre جایگاه بسیار بالایی در آنها دارد. این آپاکی‌ها توسط اداسیون با مقدار بالایی REE در تصویر

آپاکی‌ها توسط اداسیون با مقدار بالایی REE در تصویر...
روش‌نامه ظاهر می‌شود. در حالتی که قسمت‌های بی‌یار نیز این آب‌نیافته‌ها در برابر یک عدد تهیه شده (به طور کلی این نیاز به توجه به آنتی‌اسیدری از انواعی است) می‌باشد که در آن قسمت‌های بی‌یار نسبت به یک نوعی از بی‌یار نشان می‌دهد.

یکی از نتایج مهم در مورد آن‌ها در آی‌آنتی‌سیدری‌های از باکتری‌ها و الکل‌های گوناگون در آی‌آنتی‌سیدری‌هایی که در آن می‌باشد که مقدار مولکول در آی‌آنتی‌سیدری‌های از ۰/۴۸۵ تا ۰/۷۵ دارد.

جدول ۲ نتایج تجزیه ریزکاکتوئون کالی آی‌آنتی در کانسار لکسیابی (بررسی درصد وزنی)

<table>
<thead>
<tr>
<th>کالی</th>
<th>F</th>
<th>Cl</th>
<th>OH</th>
<th>مجموع</th>
<th>F+Cl+OH</th>
<th>مجموع(F,Cl)</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_2O_5</td>
<td>20.2</td>
<td>0.5</td>
<td>0.9</td>
<td>21.6</td>
<td>0.8</td>
<td>0.0</td>
</tr>
<tr>
<td>TiO_2</td>
<td>1.2</td>
<td>0.3</td>
<td>0.4</td>
<td>1.9</td>
<td>0.2</td>
<td>0.0</td>
</tr>
<tr>
<td>Na_2O</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CaO</td>
<td>0.5</td>
<td>0.1</td>
<td>0.2</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MgO</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>MnO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>SrO</td>
<td>0.2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.4</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Y_2O_3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>La_2O_3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CeO_2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PrO_3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Nd_2O_3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>SmO_2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>EuO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ErO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>TmO_2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>YbO</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Lu_2O_3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Sr_2O_3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ThO_2</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>CeF_3</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>NaF</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>F</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>Cl</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>OH</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>مجموع</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>F+Cl+OH</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>مجموع(F,Cl)</td>
<td>0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

#"Calculated"
فتوح بهدیل ضریب گداشتی باقید در مذاک غنی از اهمیت مترکم‌ شده (24). سپس وارد سیال‌های گرم‌ساز شده و به صورت آپاتیت غنی F منقب شده (فتوح، آپاتیت غنی) تعیین می‌شود. بین این‌ها غلظت به بسیاری از ایاله‌های آپاتیت‌های می‌تواند ناشی از دخلت و درگیری غلظت‌های گرم‌سازی‌های آپاتیت‌های در این ناحیه باشد. شکل‌گیری آپاتیت غنی از فتوح به کمی از این‌ها در سیال نیاز دارد. در (5)، در جهت که سیال‌های غلظت‌های مشابه تری کلر (10<7) آپاتیت غنی از کلر نمی‌سازد. این امر توضیح می‌دهد که چرا

بیشتر آپاتیت‌ها در محیط‌های گرم‌ساز غنی از فتوح هستند، حتی اگر غلظت کلر در سیال غنی به ترتیب بیشتر باشد. مقدار Sr در آپاتیت‌های لکسمیایی بین 0.1 تا 0.2 درصد غلظت بر مبنای دامنه ی فتوح به کم یا مقام‌های آپاتیت‌های وابسته به ذخایر کربناتیتی می‌باشد که در 25 درصد وزنی سیستم است و این فتوح غلظت بر مبنای 1 درصد وزنی در دارای خاک‌ها گرم‌سازی و با در ([27] براساس نمونه‌های سیاتیک و [28] ترک شیمیایی آن ها HREE+Y-LREE-Th+U بررسی شده در نمونه‌های سیاتیک Ce گونه Ce نکیده هستند و آن در این کلاس است. در (شکل 4) HREE+Y-LREE-Th+U (شکل 6) قبلاً، نمونه‌های مواد بررسی که قطبی Ce نشان دهنده غلظت بیشتر عنصر در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) نشان دهنده غلظت بیشتر عنصر در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) قبلاً، نمونه‌های مواد بررسی که قطبی Ce نکیده هستند و آن در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) نشان دهنده غلظت بیشتر عنصر در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) قبلاً، نمونه‌های مواد بررسی که قطبی Ce نکیده هستند و آن در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) نشان دهنده غلظت بیشتر عنصر در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) قبلاً، نمونه‌های مواد بررسی که قطبی Ce نکیده هستند و آن در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) نشان دهنده غلظت بیشتر عنصر در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) قبلاً، نمونه‌های مواد بررسی که قطبی Ce نکیده هستند و آن در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) نشان دهنده غلظت بیشتر عنصر در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) قبلاً، نمونه‌های مواد بررسی که قطبی Ce نکیده هستند و آن در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) نشان دهنده غلظت بیشتر عنصر در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) قبلاً، نمونه‌های مواد بررسی که قطبی Ce نکیده هستند و آن در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) نشان دهنده غلظت بیشتر عنصر در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) قبلاً، نمونه‌های مواد بررسی که قطبی Ce نکیده هستند و آن در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) نشان دهنده غلظت بیشتر عنصر در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) قبلاً، نمونه‌های مواد بررسی که قطبی Ce نکیده هستند و آن در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) نشان دهنده غلظت بیشتر عنصر در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) قبلاً، نمونه‌های مواد بررسی که قطبی Ce نکیده هستند و آن در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) نشان دهنده غلظت بیشتر عنصر در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) قبلاً، نمونه‌های مواد بررسی که قطبی Ce نکیده هستند و آن در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) نشان دهنده غلظت بیشتر عنصر در این کلاس است. در (شکل 4) Ce گونه Ce در این کلاس است. در (شکل 6) قبلاً، نمونه‌های مواد بررسی که قطبی Ce نکیده هستند و آن در این
شکل 4: توزیع عناصر خاکی نادر در کانی آپاتیت، به‌هم‌گرده شده با کندریت [۲۹].

شکل 5: (الف و ب) تصاویر میکروسکوپی نور عبوری از مونازیت‌های خرمایی رنگ در شکستگی‌های آپاتیت (XPL)، (ب) تصویر BSE از میان‌بارهای پراکنده مونازیت با ابعاد مختلف در پلور آپاتیت و (ت) تصویر BSE نازکی از منطقه‌بندی تیره و روشن در پلور مونازیت با ابعاد تقیبی ۱۰۰ میکرون (Mnz: مونازیت، Ap: آپاتیت، Mag: مغنتیت)

شکل 6: ترکیب مونازیت‌های لکه‌سیاه درalf نمودار La-Ce-Nd و (ب) نمودار HREE+Y-LREE+Th+U. [۲۸]
جدول ۲

نتایج تجزیهٔ ریزکوالکترونی کانی مولتیت در کانسار لکسیمه (برحسب درصد ونی).

<table>
<thead>
<tr>
<th>کانی</th>
<th>محلول مولتیت</th>
<th>محلول روشن مولتیت</th>
<th>محلول روشن مولتیت باند</th>
<th>محلول مولتیت</th>
<th>محلول رنگ مولتیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pr₂O₃</td>
<td>۰.۲۷</td>
<td>۰.۳۵</td>
<td>۰.۳۶</td>
<td>۰.۲۷</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>PbO</td>
<td>۰.۳۵</td>
<td>۰.۳۶</td>
<td>۰.۳۷</td>
<td>۰.۲۷</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>ThO₂</td>
<td>۰.۲۰</td>
<td>۰.۳۵</td>
<td>۰.۳۶</td>
<td>۰.۲۰</td>
<td>۰.۳۵</td>
</tr>
<tr>
<td>UO₂</td>
<td>۰.۵۰</td>
<td>۰.۳۶</td>
<td>۰.۳۷</td>
<td>۰.۵۰</td>
<td>۰.۳۶</td>
</tr>
<tr>
<td>Y₂O₃</td>
<td>۰.۳۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>La₂O₃</td>
<td>۰.۲۵</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۵</td>
<td>۰.۲۰</td>
</tr>
<tr>
<td>Ce₂O₃</td>
<td>۰.۵۵</td>
<td>۰.۳۶</td>
<td>۰.۳۷</td>
<td>۰.۵۵</td>
<td>۰.۳۶</td>
</tr>
<tr>
<td>Pr₂O₃</td>
<td>۰.۲۵</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۵</td>
<td>۰.۲۰</td>
</tr>
<tr>
<td>Nd₂O₃</td>
<td>۰.۴۵</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۴۵</td>
<td>۰.۲۰</td>
</tr>
<tr>
<td>Sm₂O₃</td>
<td>۰.۳۰</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۳۰</td>
<td>۰.۲۰</td>
</tr>
<tr>
<td>Eu₂O₃</td>
<td>۰.۳۵</td>
<td>۰.۳۰</td>
<td>۰.۳۱</td>
<td>۰.۳۵</td>
<td>۰.۳۰</td>
</tr>
<tr>
<td>Gd₂O₃</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
<td>۰.۳۱</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
</tr>
<tr>
<td>Tb₂O₃</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
<td>۰.۳۱</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
</tr>
<tr>
<td>Dy₂O₃</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
<td>۰.۳۱</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
</tr>
<tr>
<td>Ho₂O₃</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
<td>۰.۳۱</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
</tr>
<tr>
<td>Er₂O₃</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
<td>۰.۳۱</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
</tr>
<tr>
<td>Tm₂O₃</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
<td>۰.۳۱</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
</tr>
<tr>
<td>Yb₂O₃</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
<td>۰.۳۱</td>
<td>۰.۵۰</td>
<td>۰.۳۰</td>
</tr>
</tbody>
</table>

ادامه جدول

<table>
<thead>
<tr>
<th>کانی</th>
<th>محلول مولتیت</th>
<th>محلول روشن مولتیت</th>
<th>محلول روشن مولتیت باند</th>
<th>محلول مولتیت</th>
<th>محلول رنگ مولتیت</th>
</tr>
</thead>
<tbody>
<tr>
<td>PbO</td>
<td>۰.۲۵</td>
<td>۰.۳۰</td>
<td>۰.۳۱</td>
<td>۰.۲۵</td>
<td>۰.۳۰</td>
</tr>
<tr>
<td>ThO₂</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>UO₂</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Y₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>La₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Ce₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Pr₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Nd₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Sm₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Eu₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Gd₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Tb₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Dy₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Ho₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Er₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Tm₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>Yb₂O₃</td>
<td>۰.۲۰</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
<td>۰.۲۰</td>
<td>۰.۲۱</td>
</tr>
</tbody>
</table>
 tercerی اکسیدیت‌ها در ترکیب زنونیم

جدول ۳

<table>
<thead>
<tr>
<th>HREE-Y-LREE</th>
<th>YPO۴</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰.۶۹</td>
<td>۰.۳۹</td>
</tr>
</tbody>
</table>

در ترکیب اکسید‌های HREE و YPO۴ است که این ترکیب HREE

از پله آن و مول مایع اول HREE

و Er-Dy-Gd در ترکیب زنونیم اغلب به صورت پیوندی کوچک با

به همراه درون کانسیم مگنتی-آنتیت (شکل های ۸ و ۹)

تشکیل شده است. در شکل ۸ که در سنگیمایا بالبری تهیه

شده است، دیده می‌شود که این کانسیم در تنوع

نامنظم به صورت قسمت‌های نیمه‌کریستال در قسمت‌های

SO۳ و Y۲O۳، ThO۲، CaO، MgO، P۲O۵، زنونیم

تبره، مقادیر

نسبت به قسمت‌های روشین بیشتر بوده، در حالی که مقدار

As۲O۳ و Fe۲O۳، UO۲ و SiO۲ در قسمت تبره و

روشن قربانی مشابه است و اخلاق قابل توجهی را نشان نمی‌دهد. نتایج مربوط به تجزیه ریزکوکتربنی کانی زنونیم در

جدول ۴ ارائه شده است.
شکل 8 تصاویر از ال BSE، مایع‌های زننی در کانی مگنتیتی از منطقه‌بندی ناحیه، بلمه.

جدول 4. نتایج تجزیه ریزکوالکترونی کانی زننی در کانسره که می‌نماید (بررسی درصد وزنی).

<table>
<thead>
<tr>
<th>اینسیما</th>
<th>درصد</th>
<th>اینسیما</th>
<th>درصد</th>
<th>اینسیما</th>
<th>درصد</th>
<th>اینسیما</th>
<th>درصد</th>
<th>اینسیما</th>
<th>درصد</th>
<th>اینسیما</th>
<th>درصد</th>
</tr>
</thead>
<tbody>
<tr>
<td>La2O3</td>
<td>0.01</td>
<td>Ce2O3</td>
<td>0.01</td>
<td>Pr6O11</td>
<td>0.01</td>
<td>Nd2O3</td>
<td>0.01</td>
<td>Sm2O3</td>
<td>0.01</td>
<td>Eu2O3</td>
<td>0.01</td>
</tr>
<tr>
<td>Gd2O3</td>
<td>0.01</td>
<td>Tb2O3</td>
<td>0.01</td>
<td>Dy2O3</td>
<td>0.01</td>
<td>Ho2O3</td>
<td>0.01</td>
<td>Er2O3</td>
<td>0.01</td>
<td>Tm2O3</td>
<td>0.01</td>
</tr>
<tr>
<td>Y2O3</td>
<td>0.01</td>
<td>La2O3</td>
<td>0.01</td>
<td>Ce2O3</td>
<td>0.01</td>
<td>Pr6O11</td>
<td>0.01</td>
<td>Nd2O3</td>
<td>0.01</td>
<td>Sm2O3</td>
<td>0.01</td>
</tr>
<tr>
<td>Gd2O3</td>
<td>0.01</td>
<td>Tb2O3</td>
<td>0.01</td>
<td>Dy2O3</td>
<td>0.01</td>
<td>Ho2O3</td>
<td>0.01</td>
<td>Er2O3</td>
<td>0.01</td>
<td>Tm2O3</td>
<td>0.01</td>
</tr>
<tr>
<td>Y2O3</td>
<td>0.01</td>
<td>La2O3</td>
<td>0.01</td>
<td>Ce2O3</td>
<td>0.01</td>
<td>Pr6O11</td>
<td>0.01</td>
<td>Nd2O3</td>
<td>0.01</td>
<td>Sm2O3</td>
<td>0.01</td>
</tr>
<tr>
<td>Gd2O3</td>
<td>0.01</td>
<td>Tb2O3</td>
<td>0.01</td>
<td>Dy2O3</td>
<td>0.01</td>
<td>Ho2O3</td>
<td>0.01</td>
<td>Er2O3</td>
<td>0.01</td>
<td>Tm2O3</td>
<td>0.01</td>
</tr>
</tbody>
</table>

نوع

جدول 4 نتایج تجزیه ریزکوالکترونی کانی زننی در کانسره که می‌نماید (بررسی درصد وزنی).
اساس شواهد میان‌برنگری، بالینی‌های جانشینی و پهن‌های دکترنهای خاستگاه‌گرمانی را برای آن‌ها ارائه کرده‌اند [۲۲]. در پژوهش‌های اخیر، خاستگاه‌گرمانی-گرمانی برای این نوع از کانسپتاریا پیشنهاد می‌شود [۲۳]. همچنین ارتباط بین کانسپتاریا IOA و IOCG که در آن کانسپتاریا IOCG به عنوان ریشه‌های عمیق‌تر سیستم‌های می‌شوند تا بی‌پرده و در سال‌های اخیر، تحقیقاتی به‌وجود آمده‌اند و در این مورد، این نوع از کانسپتاریا IOA و IOCG بتواند ضروری‌تر شود و رشد فراوانی داشته و این امر منجر به پژوهش‌های جدیدی پیرامون ذخایر و رفتار انتقال زمین‌شیمیایی و فرایندهای غنی‌شدنی این

بحث
کانسپتاریا اکسید-آهن آپاکیت از مهم‌ترین منابع آهن، فسفر و سایر عناصر راهبردی (مانند عناصر خاکی تند، آوراتیوم و نقره و کالسیت) برای پیشبرد اهداف صنعتی مدور هستند. این نوع کانسپتاریا دارای ویژگی‌های کانسپتاریا معمولی شامل مکانیت با مقدار تی‌لیت‌های مقدار مناسب آپاکیت و نوبه فراوانی کم کوارتز است [۲۰]. از آنجایی که کانسپتاریا IOA هنوز مورد بحث است، برخی مدل‌های معمولی را برای آن‌ها در نظر گرفته‌اند که در این مقاله ارتباط آپاکیت-کانسپتاریا آپاکیت این نوع با سنگ‌های آذرین است [۲۳]. در حالی که برخی دیگر بر

[DOI: 10.29252/ijcm.28.1.4]
عنصر در این کانسپرهای شده است. عنصر خاکی نادیر بیشتر طی فرآیندهای زمین‌شناختی اولیه و ثانویه رفتار غیر منجر به

ضرر زمین‌شناختی و ترموبدینامیکی به‌وجود می‌آید. [۳۴]

۲۵۱. فرآیندهای زمین‌شناختی ناحیه مانند کائزریه‌های چند

مرحله‌ای، دگرگاهی و هورایکگی باعث تغییر عنصر اصلی، بار

توزیع عنصر خاکی نادر در کانسپرهای زمین‌شناختی، تهیه مناسب

می‌کند. در زیر نشان داده می‌شود که عنصر اصلی کائزریه‌های

سایر می‌تواند به عنصر اصلی در این کانسپرها تأثیر بگذارد. [۳۷]

[۱۱] موفقیت در کانسپرهای فرآیندی از نظر اپتیصلاژی و زمین‌شناختی

در این کانسپرها ثابت شده است. [۳۵] عمودی از کانسپرهای به

در دقت با دیگر کانسپرهای باشند. [۳۶]

[۱۱] موفقیت در کانسپرهای فرآیندی از نظر اپتیصلاژی و زمین‌شناختی

در این کانسپرها ثابت شده است. [۳۵] عمودی از کانسپرهای به

در دقت با دیگر کانسپرهای باشند. [۳۶]
شکل 11: جایگاه نمونه‌های آپاتیت لکسیسی در نمودار Cl-F-OH و قرارگیری آن‌ها در نواحی فلت‌های آپاتیت. برای نمونه‌های این منطقه است.

شکل 12: جایگاه نمونه‌های آپاتیت لکسیسی در نمودار Cl-F-OH و قرارگیری آن‌ها در نواحی فلت‌های آپاتیت. بررسی اغلب در گستره مربوط به کانسک‌های اهن و سنگ‌های مافیک فرار دارد.
یعنی خاستگاه گسترش این آلیکسی سایر انواع کسب‌بافی با استفاده از مکانیک

تکنیک مکانیکی می‌تواند سری‌الدین و شیمیایی که در آن شکل گرفته است در ناحیه ده در ناحیه ده می‌تواند گرفتن برخی از

عناصر اصلی و کربن مانند آلومینیوم، نیکل، و نیکلیوم که مایعیت و نیکلیوم است. این و نیکلیوم عنصر کربنی

که این کربنیت با خواص فیزیکی و شیمیایی اکسید کردن دهشده اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که

نقطه می‌باشد شناختن کربن‌ایکسید اکسید‌های آلومینیوم در

سیستم آلومینیوم با آنتئاگر کربن‌ایکسید شده است که
شکل ۱۴ جایگاه نمونه‌های مگنتیت لکسی‌سیاه در نمودار V/Ti (شانه‌ها مشابه شکل ۱۳). نمونه‌های مگنتیت لکسی‌سیاه اغلب در گستره ماگما پی بی‌پایه کم‌کمی‌سی بلندی گردیده‌اند.

شکل ۱۳ جایگاه نمونه‌های مگنتیت لکسی‌سیاه در نمودار Ti-V (Ti، Ni/Ti، V/Ti) در نمودار V/Ti، Ti+V از Ti+V، V و Ti در نمودار V/Ni (V، Ni/Ti).
برداشت
کانسار آهن لکسیمی بیشتر از مگنتیت آلوئی به همراه مقادیری آپاتیت تشکیل شده است. بولورهای آپاتیت نیمه خودشکل تا خودشکل و به رنگ سیز و درشت بلور هستند. به طوری که این کانسار را می‌توان در گستره کاسارهای آهن- آپاتیت دردیند کرد. آپاتیت به همراه مگنتیت از سیال ماسکالی اولیه تشکیل شده است. پس از اثر محولهای تاناهی دستی‌خورده و فرابندی واشته به ان جوی انحلال و تصفیش شده است. طی این فرآیند، بدیهی منطقه‌بندی نامتظم در این کانی رخ داده است. افروز بر آن سپر شده است تا جایی در عنصر خاکی نادر و تعداد دیگری از عنصر نادر به وجود آید. در نتیجه ترکیب شیمیایی نواهای تره و روشن در منطقه‌بندی این کانی متفاوت است. همچنین کانی‌های جدید مانند مونتاژت و زنوتیم نیز در اثر این فرآیند شکل گرفته‌اند. مونتاژت‌ها بیشتر قسمت‌های تره تشکیل شده‌اند. زنوتیت کانونی غنی از محل LREE بوده که نخست بیشتر در محل شکستگی‌های آپاتیت و درون آن تشکیل شده و سپس در اثر LREE پیدا در عوارش است. منسجم به دیدش در لیست مولکول‌های تطبیق شده است. همچنین مونتاژت خود از محولهای ثانویه دارای گرافیت و دارای منطقه‌بندی مشخص تره و روشن در شده است. زنوتیم به مقدار کمتری و طی فرآیند تصفیش مکمل سارده‌های مولکولی مونتاژت تشکیل شده است. نتیجه این کانی غنی از Y و HREE این کانی مناسب هست در محولهای ثانویه فرار گرفته و دارای منطقه‌بندی مشخص تره و روشن در شده است. مولکولی هر یک از زنوتیم و فرآیند تصفیش در این کانی هست. نتایج این پژوهش نشان می‌دهد که مونتاژت و زنوتیم تحت تاثیر فرآیند دگرگرداندن مولکولی در مرحله ثانویه تشکیل شدند. نمونه‌های استفاده شده نشان دهنده غنی بودن آپاتیت از فلورور است. همچنین این نمونه‌ها سازگار همکاری مونتاژت و زنوتیم را با ترکیب عنصرنگی این دوکانی نشان می‌دهد.

مراجع

[27] Rappaz M, Abraham MM, Ramey JO and Boatner LA., "EPR spectroscopic characterization of Gd in the monazite-type REE orthophosphates: LaPO4, CePO4, PrPO4, NdPO4, SmPO4 and EuPO4", Physical Review Journals, 23 (1981) 1012-30.

[56] Ray G., webster I., "Geology and chemistry of the low Ti magnetite-bearing Heff Cu-Au skarn and its associated plutonic rocks, Heffley Lake,