پراکندگی اندامه و شکل بلورها بلای پلازیوکلاز در آندزیت‌های بازالتی شمال گاوخونی

مهناث خدامی\(^1\) بهنام بختیاری\(^2\)

\(^1\) گروه زمینشناسی، پردیس علوم، دانشگاه آزاد، تبریز، ایران
\(^2\) دانشکده منابع طبیعی و علوم زمین، دانشگاه شهیدرضا، تبریز، ایران

چکیده: بلای پلازیوکلاز فراوان‌ترین کانی سازنده آندزیت‌های بازالتی شمال گاوخونی است که بطور ریز‌ساخت و درشت‌بلور، و با شکل‌های سه‌بعدی درک نیاز دیده می‌شود. اولیون و پیروکسن از دیگر کانی‌های سازنده این سنگ‌های هستند. بلورهای بلای پلازیوکلاز کاهی بافت غیری، منطقه‌بندی نوسانی و رشد سنوسی از خود نشان می‌دهند. براساس نتایج بررسی پراکندگی آن‌ها، سرعت مستقیم برابری بلورهای بلای پلازیوکلاز تقریباً بافت‌های منتشر شده در سطح زمین تناسب و سرعت نشان‌داده‌کننده در آن، دیده می‌شود. از این رو، با اساس اندامه‌ای این سنگ‌های کاهی، سرعت زمان اقلیم بلور مثبت نشان‌دهنده می‌شود. پراکندگی اندامه بلورهای بلای پلازیوکلاز در این سنگ‌ها، سرعت بلور و زمان اقلیم بلور نشان‌دهنده می‌شود. پراکندگی اندامه بلورهای فراوان‌ترین کانی سازنده آندزیت‌های بازالتی شمال گاوخونی است که بطور ریز‌ساخت و درشت‌بلور، و با شکل‌های سه‌بعدی درک نیاز دیده می‌شود.

واژه‌های کلیدی: آندزیت بازالتی، پراکندگی اندامه، بلور، زمان اقلیم بلور، پلازیوکلاز

مقدمه

نظریه پراکندگی اندامه بلورها روی فیزیکی و تکمیل برای تحلیل اندامه‌ای سنگ‌نگاری و زمین شیمی است که فردینده فیزیکی درک کردن بلور و سرعت آنها را بررسی می‌کند. در این روش، بر اساس اندامه‌ای دانه‌های سنگ‌نگاری سرعت زمانی است. اندامه بلورهای بلور مثبت نشان‌دهنده می‌شود. پراکندگی اندامه بلورهای فراوان‌ترین کانی سازنده آندزیت‌های بازالتی شمال گاوخونی است که بطور ریز‌ساخت و درشت‌بلور، و با شکل‌های سه‌بعدی درک نیاز دیده می‌شود. پراکندگی اندامه بلورهای فراوان‌ترین کانی سازنده آندزیت‌های بازالتی شمال گاوخونی است که بطور ریز‌ساخت و درشت‌بلور، و با شکل‌های سه‌بعدی درک نیاز دیده می‌شود. پراکندگی اندامه بلورهای فراوان‌ترین کانی سازنده آندزیت‌های بازالتی شمال گاوخونی است که بطور ریز‌ساخت و درشت‌بلور، و با شکل‌های سه‌بعدی درک نیاز دیده می‌شود.
پهنه ایران مرکزی قرار دارد [5]. این پهنه شاهد تکاپی‌های ماکم‌های گسترده‌ای در سلول‌های دوپنیکی و یونس‌ها پایه‌های تکانه‌ای ساختارهای دامنه و ناحیه‌ای از میان‌های نازک و نازک‌های کنتاکتی که به صورت گنبدی، گنبدی و گداره رخم‌های دارد. سنگ‌های آندرتی بازالتی، آندزیت، داسیت و روباسیت از جمله سنگ‌های پلیوسنی ساخته شده و در زیر آزادی‌های منطقه‌ای هستند [5]. سنگ‌های آندرتی‌استوار با سخت‌کننده سنگ‌های میان‌های نازک و پلیوسنی، کنگره‌های شرقی این منطقه در سیاه‌آباد و کومه‌های دیگر در کرانه شمال باتلاق گاوخویی رخم‌های دارد. این سنگ‌ها به صورت جریان گدازه و اسکروی دیده می‌شوند و بیشتر مراکز خروج گسترتر یافته‌اند [6] (شکل 1).

![شکل 1 نقشه زمین‌شناسی منطقه شده از نقشه 135000 ناپی. [5]](image_url)
روش بررسی

نمونه‌های آندزیتی زیرالیک از نقاط مختلف سیاگوکوه آیلائد و ویزیگی و ارتباط صحرایی سنجگاه آندزیتی و کاتانویی خاکی و با فاکتورهای ویژه و بی‌روابط دارای نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

احراز و پیکر انرژی‌ها به وسیله طرح‌ها و اندازه‌گیری‌ها در منطقه با مدل‌های مختلف، ارتباطات میان نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در مطالعه موجود روندهای طبیعی و محیطی و نیز ارتباطات میان نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در این مقاله، به همراه بررسی‌های متنوع و در یک مقداری از شکل‌ها و سطح نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در این مقاله، به همراه بررسی‌های متنوع و در یک مقداری از شکل‌ها و سطح نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در این مقاله، به همراه بررسی‌های متنوع و در یک مقداری از شکل‌ها و سطح نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در این مقاله، به همراه بررسی‌های متنوع و در یک مقداری از شکل‌ها و سطح نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در این مقاله، به همراه بررسی‌های متنوع و در یک مقداری از شکل‌ها و سطح نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در این مقاله، به همراه بررسی‌های متنوع و در یک مقداری از شکل‌ها و سطح نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در این مقاله، به همراه بررسی‌های متنوع و در یک مقداری از شکل‌ها و سطح نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در این مقاله، به همراه بررسی‌های متنوع و در یک مقداری از شکل‌ها و سطح نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در این مقاله، به همراه بررسی‌های متنوع و در یک مقداری از شکل‌ها و سطح نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در این مقاله، به همراه بررسی‌های متنوع و در یک مقداری از شکل‌ها و سطح نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در این مقاله، به همراه بررسی‌های متنوع و در یک مقداری از شکل‌ها و سطح نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در این مقاله، به همراه بررسی‌های متنوع و در یک مقداری از شکل‌ها و سطح نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.

در این مقاله، به همراه بررسی‌های متنوع و در یک مقداری از شکل‌ها و سطح نمونه‌های آندزیتی و باعث تغییر در میزان و نوع شکل‌ها و سطح نمونه شده‌اند.
شکل ۲ ألف (تصویر میکروسکوپی (XPL) دو نسل پلازیوکلاز با فاقد غبار و رشد بلورهای بهم چسبیده پلازیوکلاز در اندزیت بژالی با فاقد ریزبلور پورفیری ب) بافت گلوپورنیفری در اندزیت بژالی گلوپورنیکه از کمیتهای پلازیوکلاز، اولویون و پیپروگن در زمینه شیشه و ریزدرشت بلور تشكل شده است.

شکل ۳ الف (تصویر اصلی و ب) تصویر پردازش شده نمونه مورد بررسی.

اندازه و فراوانی اندازههای مختلف بلور بررسی و با تفسیر آنها شرایط تبلور مشخص می‌شود. برای ترسی شکل بلور در فضای سه بعدی از نسبت منظر بلور، عناصر طول: عرض: ارتفاع شکل و پراکندگی اندازه بلور بررسی پراکندگی اندازه بلورها روی نقشه تکمیلی در سنگ شناسی است. بر پایه این روش ویژگی‌های مختلفی از بلور جون شکل.
بر اساس اندازه و شکل بلورهای پلاژیوکلاز در اندریزه‌های...

واحد حجم (Nv) به تعداد بلورها در واحد سطح محاسبه می‌شود:

\[D = S + I + L/3 \] (3)

S/I نسبت به شکل بلورها در نمودارهای زیگنا نمودار L نسبت به L و S/I تبدیل و از نتایج به نسبت انتهای بیان کمی شکل بلورها استفاده می‌شود. بطوریکه مقدار عرض به طول

بین 1 و 2/3 نسبت به L و S/I توجه به خمیدگی نمودار در شکل 3 (W/L) نسبت به W/L توزیع نسبت عرض به طول بلورها در مقطع نازک می‌توان

را با رابطه زیر بدست آورد که

\[\text{خمیدگی } \theta = \frac{I/L}{I/L} \]

(1)

(2) میانگین (W/L)\(\text{انحراف استاندارد} (=\text{(W/L)}\text{(/W/L)\text{انحراف استاندارد}}\]

ضریب ثابت شکل (طول مشخص) از نسبت تعداد بلورها در

\[\text{شکل 4 نمودار پراکندگی نسبت‌های عرض به طول بلورها مقطع شماره 2} \]

\[\text{شکل 5 شکل بلورهای پلاژیوکلاز و نمودار زیگنا برای نمونه‌های مورد بررسی} \]

\[\text{ دولی: 10.29252/ijcm.27.3.683, \text{Downloaded from ijcm.ir on 2022-02-15}} \]
جدول 1 ارتباط ابعاد بلور در تنویع‌های مرود بررسی

<table>
<thead>
<tr>
<th>Sample</th>
<th>S</th>
<th>I</th>
<th>L</th>
<th>S₁</th>
<th>L₁</th>
<th>σ</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>1.25</td>
<td>0.08</td>
<td>0.08</td>
<td>1.25</td>
<td>0.08</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>1.3</td>
<td>0.27</td>
<td>0.27</td>
<td>2.3</td>
<td>0.37</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1.1</td>
<td>0.25</td>
<td>0.25</td>
<td>1.5</td>
<td>0.5</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>1.55</td>
<td>0.45</td>
<td>0.45</td>
<td>4.5</td>
<td>2.5</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1.7</td>
<td>0.28</td>
<td>0.28</td>
<td>3</td>
<td>0.5</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>0.35</td>
<td>0.2</td>
<td>0.2</td>
<td>0.5</td>
<td>0.3</td>
</tr>
</tbody>
</table>

افزون بر شکل بلورها، نظیر پراکنده‌ای اندزه‌ی بلورها همجنین روتو تکمیلی برای شناخت سرعت‌های پراکندگی فیزیکی در بلور نیز است [16] این اساس این روش بر پایه اندزه‌ی دانه و فراوانی آنها در سطح این است. تیپین اندزه برای بلور با دارای مشخص کردن فضای دیگری‌گردهدگی بلور است. عوامل اصلی در تحلیل پراکنده‌ای اندزه بلور برای بلورپلاژیکال‌های آندزه‌ای بناه‌های محاسبه و نمودارهای فراوانی اندزه‌های مختلف رشته شد (جدول 2). سه شرط. تنویع نمودار پراکنده‌ای اندزه بلور یک رابطه لگاریتمی خطی - توزیعی با افزایش اندزه بلور دارد. در نمودار فراوانی لگاریتمی بلورها نسبت به اندزه دانه‌ها در نرخ‌بلور از شیب می‌تواند نمودار لگاریتمی در سطح زمانی مشخصی ضریب سطحی تخمین اید [16].

\[
G = \frac{\sigma}{t} \tag{4}
\]

بافت یک سطح راه اندازی داشته که شکل، جهت، پایه، موقعیت و ارتباط بلورپلاژیکال‌های فلزی نسبت‌هایگذران و رشد تحت تاثیر عوامل‌های نرم‌ساز آن الکترونم جامعه به سمت تعادل پیش می‌روند. بافت سطح‌های آنتی‌ماتژی پیشینه گرمسیری سیستم را در خود حفظ می‌کند. بلورپلاژیکال‌های آنتی‌ماتژی آنتی‌ماتژی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار راهای بی‌بازگردانی می‌کند. رشد گسترش بافت و عوامل آنتی‌ماتژی رشد داشته‌شدگی در اثر مغناطیسی با جمجمه از قرار Решته از رابطه زیر به دست می‌آید [16]:

\[
S = \frac{1}{G} \tag{4}
\]

\[
J = G N^0 \tag{5}
\]

سپاس.
درشت بلورها در محیطی نسبتا ساکن شکل‌های نزدیک به هم بعد ایجاد می‌کند، در صورتی که رشد بلور ضمن حرکت مگما بلورهای کشیده‌تری را بوجود می‌آورد. زیرا جابجایی مگما در این محیط نازل را بیشتر است. بلورها از حالات همپیچد و شکل‌های طولی تر و نازکتر ایجاد می‌کند.

بلورهای پلازیکولار مورد بررسی تیغه‌ای نا دوکی شکل بوده و هم بعد نیستند. این موضوع بیانگر فشار باین سیستم مجموعه هسته‌مندی و انتشار بالاتر و رشد کم بلور ضمن حرکت است که با شرایط انسحابی قابل توجه است. پلازیکولارهای ریزبلوری و درشت‌تر بلورهای دارای منطقه‌بندی و گاهی بافت غباری، شرایط بلور و دوره‌های هضم و رشد را نشان می‌دهند.

جدول ۲: نتایج برآمردی از نمودارهای پراکندگی اندوزه بلور برای نمونه‌های مورد بررسی

<table>
<thead>
<tr>
<th>نمونه</th>
<th>عرض از میدان شیب (‰)</th>
<th>G(م/س)</th>
<th>J(م/س۲)</th>
<th>T(سال)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۵</td>
<td>۹.۵ - ۱۸</td>
<td>۱۹۸۵</td>
<td>۱.۱۰</td>
<td>۱.۰۰</td>
</tr>
<tr>
<td>۶</td>
<td>۱۴.۵ - ۱۷۵۱</td>
<td>۲.۸۸۱۷</td>
<td>۱.۱۰۰۱</td>
<td>۱.۰۰۰۱</td>
</tr>
<tr>
<td>۷</td>
<td>۶.۵ - ۱۸۶۵</td>
<td>۳.۰۷۱۶</td>
<td>۱.۱۰۰۲</td>
<td>۱.۰۰۰۲</td>
</tr>
<tr>
<td>۹</td>
<td>۱۲ - ۱۴۸۴</td>
<td>۲.۷۷۱۰</td>
<td>۱.۰۰۰۳</td>
<td>۱.۰۰۰۳</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱۱.۲ - ۱۸۹۸</td>
<td>۱.۹۸۱۰</td>
<td>۱.۰۰۰۴</td>
<td>۱.۰۰۰۴</td>
</tr>
<tr>
<td>۱۲</td>
<td>۳.۸ - ۱۸۵۲</td>
<td>۱.۰۵۱۰</td>
<td>۱.۰۰۰۵</td>
<td>۱.۰۰۰۵</td>
</tr>
</tbody>
</table>
نموردهای پراکندگی اندامه بلوار

زمان توقف و رخدارهای آشیانه‌ای ماکمگی، نرخ سردر و چهارگانه ماکمگی شریک و شریکی پلاک‌های اندامه بلوارها نیز اثر می‌گذارد. [۲۲] نموردهای پراکندگی اندامه بلوارها حالتی خاصی را نشان می‌دهد که هر یک جزئی از یک یا چند پراکندگی جمعیت بهبود یافته باشد.

بلوری کم کن. نموردهای پراکندگی اندامه بلوارها تأثیر بلوار در شرایط عدم متقیم و به صورت یک خاصیت، می‌تواند باعث شود که میزان بلوار ماکمگی و درشتی متفاوت است که روند متدال این دوره نیز می‌تواند باعث شود که با توجه به محدودیت در مقدار بهبود این آشیانه‌ها ماکمگی و طی صورت احتمال وابسته به آشفتگی در دوره بلوار این نماد، گردد.

در صورت وجود دیگر مشاهده در درمان بلوار از نظر ترتیب، نموردهای پراکندگی اندامه بلوارها شرطی خواهد بود. در این راستا و در صورت حضور در فضاهای اساسی یا بلوار کمک‌کاری، نوره‌ای به پراکندگی اندامه بلوارها منجر می‌شود. این پراکندگی از نظر معنی پراکندگی بلوارها شرطی خواهد بود. در این راستا و در صورت حضور در فضاهای اساسی یا بلوار کمک‌کاری، نوره‌ای به پراکندگی اندامه بلوارها منجر می‌شود. این پراکندگی از نظر معنی پراکندگی بلوارها شرطی خواهد بود. در این راستا و در صورت حضور در فضاهای اساسی یا بلوار کمک‌کاری، نوره‌ای به پراکندگی اندامه بلوارها منجر می‌شود. این پراکندگی از نظر معنی پراکندگی بلوارها شرطی خواهد بود. در این راستا و در صورت حضور در فضاهای اساسی یا بلوار کمک‌کاری، نوره‌ای به پراکندگی اندامه بلوارها منجر می‌شود. این پراکندگی از نظر معنی پراکندگی بلوارها شرطی خواهد بود. در این راستا و در صورت حضور در فضاهای اساسی یا بلوار کمک‌کاری، نوره‌ای به پراکندگی اندامه بلوارها منجر می‌شود. این پراکندگی از نظر معنی پراکندگی بلوارها شرطی خواهد بود. در این راستا و در صورت حضور در فضاهای اساسی یا بلوار کمک‌کاری، نوره‌ای به پراکندگی اندامه بلوارها منجر می‌شود. این پراکندگی از نظر معنی پراکندگی بلوارها شرطی خواهد بود. در این راستا و در صورت حضور در فضاهای اساسی یا بلوار کمک‌کاری، نوره‌ای به پراکندگی اندامه بلوارها منجر می‌شود. این پراکندگی از نظر معنی پراکندگی بلوارها شرطی خواهد بود. در این راستا

1- Ostwald ripening
درشت پسرها

می‌تواند نمایانگر یک برنامه تربیتی چشم‌انداز باشد که می‌تواند به موفقیت در مطالعه و بهبود کیفیت آموزش کمک کند. این برنامه می‌تواند برای معلم‌های دبیرستانی یا مدرسه‌های آموزشی مورد استفاده قرار گیرد. این برنامه می‌تواند به موفقیت در مطالعه و بهبود کیفیت آموزش کمک کند. این برنامه می‌تواند برای معلم‌های دبیرستانی یا مدرسه‌های آموزشی مورد استفاده قرار گیرد.
نمودار همیستگی معکوس حجم بلور با میانگین اندازه بلورهای مورد بررسی [4] که نشان می‌دهد که در پلاژیوکلاژنا درشت‌شده‌گی از هسته‌گذاری سطحی و هضم بلورهای کوچک‌تر پیروی می‌کند.

برداشت

از بررسی پراکندگی اندازه و شکل بلور برای بلورهای پلاژیوکلاژنا نتایج گاتونی نشان دهنده افزایش نسبی در میانگین اندازه بلورهای مورد بررسی پراکندگی می‌باشد.

آمده:

1. پلاژیوکلاژنا از مورد بررسی به‌صورت ریزبولو و درشت بلو با پارک‌زدایی شرکتکاری می‌باشد.

2. درشت‌شده‌گی با سطح میانگین اندازه بلورهای مورد بررسی وابسته به حالت سیستم‌های این منبع‌های مورد بررسی وابسته به حالت سیستم باز است که خود از روند انحلال دانه‌های کوچکتر و هم‌زمان با دانه‌های کوچک‌تر و درشت‌شده‌گی بلورهای پلاژیوکلاژنا مورد بررسی نشان داده شده است.

3. نمودارهای پراکندگی اندازه‌های بلور، هم‌ارای یا جمع‌یهای بلوری متمایز را نشان می‌دهد که می‌تواند ناشی از ورود یک

شکل 7 ویرگی طولی بلور نسبت به هسته بنی اولیه و درشت‌شده‌گی در میانگین اندازه بلورهای مورد بررسی [36] از پلاژیوکلاژنا درشت‌شده‌گی از هسته‌گذاری سطحی و هضم بلورهای کوچک‌تر پیروی می‌کند.

شکل 8 نمودارهای میانگین اندازه بلورهای مورد بررسی [4] که نشان می‌دهد که در پلاژیوکلاژنا درشت‌شده‌گی از هسته‌گذاری سطحی و هضم بلورهای کوچک‌تر پیروی می‌کند.

[23] Ni H., Keppler H., Walte N., Schiavi F., Chen Y., Masotta M., Li Z., "In situ observation of crystal growth in a basalt melt and the