بررسی شیمی کانی و تبعیض خاستگاه تورمالین‌های ناحیه ملاناتلاب (شمال الیگودرز - ایران)

سید وحید شاهروخی*، حسین دلفانی

کروش زمین‌شناسی، دانشکده علوم پایه، واحد خرما‌بار، دانشگاه آزاد اسلامی، خرم‌بارد، ایران

چکیده: ناحیه ملاناتلاب در شمال شهرستان الیگودرز و در بخش دگرگونه سنندج-سیرجان قرار دارد. قدمتی ترین نهشته‌های موجود شامل تولید نسبتاً کوچک، استتیس و شبیه به رگ و رگ‌چه‌های سیبیسی به همراه هورنیت‌های دوخته و ماسک‌سیه‌های دگرگون شده است. پیدایش و نفوذ توده‌های گرانیوتوندی ناحیه الیگودرز در زمان زوراسیک سه‌پاره درون جوش‌های دهخداه زمین‌سنی در این ناحیه است. تجربه در روش پیوندهای الکترونی (نقطه‌ای) از تورمالین‌های موجود در مالاتلاب های آلپنی-پتولیتی تورمالین‌های رنگ‌های وریزنتورمالین‌های تاریک رنگی و رنگ‌های کورت-تورمالین‌های نشین می‌دهند که همه تورمالین‌های در گستره بین شور-کوینتیت با تمایل به‌بیشتر در منطقه شهرستان گرفاش‌می‌کنند. رخ‌داده‌های منعدم و حالت تورمالین‌های این ناحیه هنگام تولید با شیمیایی آلی و آلی-ناگه و همچنین نهایی جامع X در تورمالین‌های تاریک مشاهده شده و بین‌گر ماگما و بدن به‌واسطه سیل مورد بررسی و استفاده به محبوب‌های تورمالین‌های جوش‌های یک سیال-گرم‌بکا با خاستگاه ماگما‌های وجود آمدهند.

واژه‌های کلیدی: تورمالین، گرانیت، تجربه ریزپیوندهای الکترونی، ملاناتلاب، الیگودرز- بهنچ سنندج- سیرجان

مقدمه
نحوه تورمالین از اندوست سنگ‌های آذرین، رسوبی و دگرگونی به دو کاتی اول یا دقیقاً بر اساس شناخته‌موفقیت عامل مبتلا به سیستم‌های گرانیت و پتولیتی به عنوان کاتی اولیه [20] محصول می‌شود. همچنین تولید این کاتی می‌تواند در شرایط اتفاقی مرحله زیرانیم تأثیرگذار مالاتلاب‌های آن جان و روداری پترونیک [4]. این کاتی به دلیل دارا بودن ترکیب شیمیایی بی‌پتولیتی و متنوع و پتولیتی در گستره وسیعی از دما و فشارهای تورمالین‌های اندوست سنگ‌شناختی مخصوص و در بستری‌های سیرجان در بررسی‌های سنگ‌شناسی مستقل و رزبسی دارد [54]. پیداگذاری ترکیب شیمیایی و تولیدی به‌سیار بالای تورمالین‌های باری خوشه‌زدی از گرداگردان، تورمالین‌های خوشه‌زدی رسوبی و تورمالین‌های نواحی قدیمی تورمالین‌های این ناحیه خاستگاه و تورمالین‌های باری از تورمالین‌های باری‌زدینه بررسی شده‌اند [12]. همچنین می‌توان برای نوع سنگ‌های دیگر در بستری از عناصر کم‌موجود در کاتی تورمالین‌های نواحی اصولی مشاهده کرد [32]. همچنین بررسی سحابی این ناحیه نشان دهنده توده‌ای وزنی و زمین‌شناسی [15]. جمع‌آوری وزنی توده‌ی وارد [16].

Vahid.Shahrokhi@Gmail.com

*نویسنده مسئول، تلفن: 0911-3363277
ازماتی کانون‌های که محل‌ها ۱۵ و ۱۶ را اشغال می‌کنند، کسر شده است [۲] کانون‌های آهن و منگنز بر پایه بررسی‌های ساختار بور ترمو‌سک را در نظر گرفته‌شدند. برای این کانون‌ها نشان داده شد که این محتوای ترین نظریت منگنز و آهن در ترمو‌سک است [۲۲] (جدول ۱).

بحث و بررسی
زمین‌شناسی عمومی
منطقه ملاتشات در شمال شرقی استان لرستان و در شمال شرقی کرمانشاه بین طول‌های جغرافیایی ۴۳° ۳۳ تا ۴۳° ۳۳ و عرض‌های جغرافیایی ۵۰ تا ۵۱ درجه و در بین ۱۰۰۰۰۰ و ۱۱۰۰۰۰۰ کیلومتری قرار دارد. این منطقه از دیدگاه زمین‌شناسی ساختاری به منطقه‌ای نسبتاً کوچکی گفته می‌شود که بر رویه‌های ترمریسیسیمی دارای تأثیر قدرتمند شدیدی می‌باشد. شرایط نسبتاً خیلی خشک و گرم و ارتفاعاتی که دارد به آنها نسبت بخشی از تپه‌های زمین‌شناسی خصوصی نسبت است [۲۳].

روش بررسی
برای تعیین ترکیب، نوع و خاستگاه ترمو‌سک در واحدهای مختلف ترمو‌سک، ناحیه ملاتشات، تعداد ۱۲ نمونه از گره‌های ترمو‌سک دار، گره‌های آیلیتی و گیمانتی ناحیه ملاتشات برداشت شد. این نمونه‌ها از سنجاق‌گری و کانی‌شناسی مواد شبیه‌سازی تهیه شده از این نمونه‌ها در تعداد ۸ مقطع برای تجزیه به روش ریز‌پردازش الکترونی انجام شده. برای منظور بررسی شیمی‌کی فیزیکی ترمو‌سک این نمونه‌ها در ۱۲ عنصر از آزمایشگاه ریزپردازش الکترونکتروشیمیکی بررسی شدند.

دانسته‌های که به‌پیش‌بینی استفاده از Cameca-SX-100 و استانداردهای مختلف برای سدیم، استاندارت‌های منیزیم، فلز‌های آهن و منگنز، آبی‌ایزی برای فسفر، لاکتی درای کلسیم، و ترکیب‌های آبی‌ایزی برای تسکین و آلومینیوم استفاده شدند.

در خلاصه نتایج برای انواع اصلی ۱/۵ درصد پردازش ۲۷ رسیده، با فرشه OH+M به سرعت OH به صورت به‌عنوان OH برابر ۴ مقدار تابع عبارت از

\[\text{فیزیک‌های هشته و جهیزه مانند H}_{2}\text{O} \]

در صورت نیود هیچ جای خالی در apfu جایگاه‌های هشته و جهیزه داریم Li مقدار \(\text{Li} \) به جایگاه بورشانسی Y اختصاص دارد از مجموع
شماره نمونه

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>۱</th>
<th>۲</th>
<th>۳</th>
<th>۴</th>
<th>۵</th>
<th>۶</th>
<th>۷</th>
<th>۸</th>
<th>۹</th>
<th>۱۰</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO۲</td>
<td>۳۴.۱۹</td>
<td>۳۴.۱۸</td>
<td>۳۴.۳۸</td>
<td>۳۴.۵۷</td>
<td>۳۵.۷۰</td>
<td>۳۵.۲۹</td>
<td>۳۵.۳۹</td>
<td>۳۵.۵۲</td>
<td>۳۵.۷۰</td>
<td>۳۵.۲۹</td>
</tr>
<tr>
<td>TiO۲</td>
<td>۰.۶۷</td>
<td>۰.۸۱</td>
<td>۰.۸۱</td>
<td>۰.۸۳</td>
<td>۰.۸۰</td>
<td>۰.۸۰</td>
<td>۰.۸۲</td>
<td>۰.۸۱</td>
<td>۰.۸۲</td>
<td>۰.۸۱</td>
</tr>
<tr>
<td>Al۲O۳</td>
<td>۳۴.۵۵</td>
<td>۳۴.۳۸</td>
<td>۳۴.۳۷</td>
<td>۳۴.۳۷</td>
<td>۳۴.۳۷</td>
<td>۳۴.۵۲</td>
<td>۳۴.۵۲</td>
<td>۳۴.۵۲</td>
<td>۳۴.۵۲</td>
<td>۳۴.۵۲</td>
</tr>
<tr>
<td>FeO</td>
<td>۱۲.۵۱</td>
</tr>
<tr>
<td>MgO</td>
<td>۰.۵۶</td>
</tr>
<tr>
<td>CaO</td>
<td>۰.۲۱</td>
</tr>
<tr>
<td>MnO</td>
<td>۱.۲۵</td>
</tr>
<tr>
<td>NaO</td>
<td>۱.۵۴</td>
</tr>
<tr>
<td>K۲O</td>
<td>۰.۲۹</td>
</tr>
<tr>
<td>MgO/Mg۲</td>
<td>۰.۲۵</td>
</tr>
<tr>
<td>Fe/Fe۲</td>
<td>۱.۵۰</td>
</tr>
</tbody>
</table>

جدول ۱ نتایج تجزیه و تحلیل ترمالین‌های موجود در سئیت‌های مختلف ناحیه ملالاطبیر بر اساس ۳۱ آنیون ترمالین موجود در پژوهشی‌ها. (۱۳۷۴) و (۱۳۷۴) رژه‌های آلی‌پتیمی‌های ترمالین‌های دار (۱۳۷۴) ترمالین‌های در (۱۳۷۴) ترمالین‌های گرده‌های کوارتز- ترمالین (۱۳۷۴).
<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
<th>16</th>
<th>17</th>
<th>18</th>
<th>19</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>32.58</td>
<td>35.54</td>
<td>35.57</td>
<td>35.6</td>
<td>35.69</td>
<td>36.2</td>
<td>35.82</td>
<td>35.88</td>
<td>35.64</td>
<td>35.69</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.85</td>
<td>0.71</td>
<td>0.73</td>
<td>0.75</td>
<td>0.8</td>
<td>0.65</td>
<td>0.67</td>
<td>0.69</td>
<td>0.69</td>
<td>0.68</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>35.99</td>
<td>34.7</td>
<td>34.83</td>
<td>34.58</td>
<td>35.1</td>
<td>34.9</td>
<td>35.9</td>
<td>34.74</td>
<td>34.81</td>
<td>34.81</td>
</tr>
<tr>
<td>MgO</td>
<td>0.88</td>
<td>0.81</td>
<td>0.83</td>
<td>0.85</td>
<td>0.9</td>
<td>0.88</td>
<td>0.87</td>
<td>0.91</td>
<td>0.88</td>
<td>0.88</td>
</tr>
<tr>
<td>CaO</td>
<td>0.18</td>
<td>0.2</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
<td>0.17</td>
<td>0.16</td>
<td>0.15</td>
<td>0.15</td>
<td>0.16</td>
</tr>
<tr>
<td>MnO</td>
<td>0.18</td>
<td>0.15</td>
<td>0.17</td>
<td>0.14</td>
<td>0.21</td>
<td>0.23</td>
<td>0.24</td>
<td>0.26</td>
<td>0.28</td>
<td>0.29</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.71</td>
<td>1.53</td>
<td>1.49</td>
<td>1.48</td>
<td>1.54</td>
<td>1.62</td>
<td>1.67</td>
<td>1.68</td>
<td>1.75</td>
<td>1.95</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.5</td>
<td>0.3</td>
<td>0.4</td>
<td>0.5</td>
<td>0.6</td>
<td>0.68</td>
<td>0.76</td>
<td>0.88</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>مجموع</td>
<td>88.12</td>
<td>87.83</td>
<td>87.5</td>
<td>87.8</td>
<td>88.5</td>
<td>88.8</td>
<td>88.5</td>
<td>88.5</td>
<td>88.5</td>
<td>88.5</td>
</tr>
<tr>
<td>Si</td>
<td>5.33</td>
<td>5.89</td>
<td>5.9</td>
<td>5.91</td>
<td>5.94</td>
<td>5.94</td>
<td>5.94</td>
<td>5.94</td>
<td>5.94</td>
<td>5.94</td>
</tr>
<tr>
<td>Ti</td>
<td>0.16</td>
</tr>
<tr>
<td>Al</td>
<td>4.976</td>
<td>4.87</td>
<td>4.88</td>
<td>4.87</td>
<td>4.88</td>
<td>4.88</td>
<td>4.88</td>
<td>4.88</td>
<td>4.88</td>
<td>4.88</td>
</tr>
<tr>
<td>Fe²⁺</td>
<td>1.48</td>
</tr>
<tr>
<td>Mg</td>
<td>0.18</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
<td>0.15</td>
</tr>
<tr>
<td>Mn</td>
<td>0.25</td>
</tr>
<tr>
<td>Ca</td>
<td>0.32</td>
<td>0.36</td>
<td>0.38</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
<td>0.36</td>
</tr>
<tr>
<td>Na</td>
<td>0.5</td>
</tr>
<tr>
<td>K</td>
<td>0.11</td>
</tr>
<tr>
<td>Xvac</td>
<td>0.553</td>
<td>0.599</td>
<td>0.616</td>
<td>0.623</td>
<td>0.633</td>
<td>0.649</td>
<td>0.656</td>
<td>0.663</td>
<td>0.671</td>
<td>0.678</td>
</tr>
<tr>
<td>Xvac+Na</td>
<td>0.417</td>
<td>0.447</td>
<td>0.472</td>
<td>0.493</td>
<td>0.514</td>
<td>0.534</td>
<td>0.556</td>
<td>0.578</td>
<td>0.599</td>
<td>0.611</td>
</tr>
<tr>
<td>Na+K</td>
<td>0.051</td>
</tr>
<tr>
<td>Xvac+Na</td>
<td>0.957</td>
</tr>
<tr>
<td>Mg+Mg+Fe</td>
<td>0.83</td>
<td>0.74</td>
<td>0.67</td>
<td>0.61</td>
<td>0.56</td>
<td>0.52</td>
<td>0.48</td>
<td>0.44</td>
<td>0.41</td>
<td>0.38</td>
</tr>
<tr>
<td>Al in R2</td>
<td>0.771</td>
<td>0.743</td>
<td>0.739</td>
<td>0.739</td>
<td>0.739</td>
<td>0.739</td>
<td>0.739</td>
<td>0.739</td>
<td>0.739</td>
<td>0.739</td>
</tr>
<tr>
<td>R2⁺</td>
<td>2.787</td>
</tr>
<tr>
<td>Mg+Fe</td>
<td>0.12</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
<td>0.11</td>
</tr>
<tr>
<td>R1=Na+Ca</td>
<td>0.82</td>
<td>0.538</td>
<td>0.538</td>
<td>0.538</td>
<td>0.538</td>
<td>0.538</td>
<td>0.538</td>
<td>0.538</td>
<td>0.538</td>
<td>0.538</td>
</tr>
<tr>
<td>R2=Fe⁺+Mg+Mn</td>
<td>2.08</td>
</tr>
<tr>
<td>R3=Al+1.33Ti</td>
<td>0.48</td>
</tr>
<tr>
<td>R1+R2</td>
<td>0.64</td>
</tr>
<tr>
<td>R2⁺+Al in R2</td>
<td>0.38</td>
</tr>
</tbody>
</table>
جدید 22، شماره 2، تابستان 1398
بررسی شیمی کانی و تعیین خاستگاه تورمالین‌های ناحیه ...

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>21</th>
<th>22</th>
<th>23</th>
<th>24</th>
<th>25</th>
<th>26</th>
<th>27</th>
<th>28</th>
<th>29</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>36.6</td>
<td>35.5</td>
<td>34.8</td>
<td>34.8</td>
<td>35.4</td>
<td>36.5</td>
<td>36.6</td>
<td>36.9</td>
<td>36.7</td>
<td>36.8</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.9</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>34.7</td>
<td>34.4</td>
<td>34.4</td>
<td>34.4</td>
<td>34.4</td>
<td>34.4</td>
<td>34.4</td>
<td>34.4</td>
<td>34.4</td>
<td>34.4</td>
</tr>
<tr>
<td>FeO</td>
<td>11.9</td>
<td>11.9</td>
<td>11.9</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
<td>12.3</td>
</tr>
<tr>
<td>MgO</td>
<td>1.8</td>
</tr>
<tr>
<td>CaO</td>
<td>0.1</td>
</tr>
<tr>
<td>MnO</td>
<td>0.9</td>
</tr>
<tr>
<td>Na₂O</td>
<td>15.5</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.4</td>
</tr>
<tr>
<td>مجموع</td>
<td>89.3</td>
<td>88.8</td>
<td>88.8</td>
<td>88.8</td>
<td>88.8</td>
<td>88.8</td>
<td>88.8</td>
<td>88.8</td>
<td>88.8</td>
<td>88.8</td>
</tr>
<tr>
<td>Si</td>
<td>7.0</td>
</tr>
<tr>
<td>Ti</td>
<td>0.1</td>
</tr>
<tr>
<td>Al</td>
<td>5.8</td>
</tr>
<tr>
<td>Fe⁺²</td>
<td>1.4</td>
</tr>
<tr>
<td>Mg</td>
<td>0.2</td>
</tr>
<tr>
<td>Mn</td>
<td>0.2</td>
</tr>
<tr>
<td>Ca</td>
<td>0.3</td>
</tr>
<tr>
<td>Na</td>
<td>0.5</td>
</tr>
<tr>
<td>K</td>
<td>0.0</td>
</tr>
<tr>
<td>FeO+MgO</td>
<td>13.6</td>
</tr>
<tr>
<td>Fe₂O₃+MgO</td>
<td>0.8</td>
</tr>
<tr>
<td>Xvac</td>
<td>0.5</td>
</tr>
<tr>
<td>Xsac</td>
<td>0.5</td>
</tr>
<tr>
<td>Na+K</td>
<td>0.5</td>
</tr>
<tr>
<td>XvacNa</td>
<td>0.6</td>
</tr>
<tr>
<td>XsacNa⁺</td>
<td>0.4</td>
</tr>
<tr>
<td>Mg,Mg+Fe</td>
<td>0.1</td>
</tr>
<tr>
<td>R₂⁺₂Al</td>
<td>0.5</td>
</tr>
<tr>
<td>R²⁺₂⁺Al</td>
<td>0.6</td>
</tr>
<tr>
<td>Fe₂O₃+MgO</td>
<td>0.8</td>
</tr>
<tr>
<td>R₁+Ca</td>
<td>0.5</td>
</tr>
<tr>
<td>R₂⁺₂⁺Mg+Mn</td>
<td>0.7</td>
</tr>
<tr>
<td>R₃⁺⁺Al+1.33Ti</td>
<td>0.8</td>
</tr>
<tr>
<td>R₁+R₂</td>
<td>0.6</td>
</tr>
<tr>
<td>R₂⁺₂⁺Al</td>
<td>0.7</td>
</tr>
<tr>
<td>شماره نمونه</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
<td>40</td>
</tr>
<tr>
<td>----------------</td>
<td>-----</td>
</tr>
<tr>
<td>SiO₂</td>
<td>354</td>
<td>333</td>
<td>328</td>
<td>324</td>
<td>320</td>
<td>316</td>
<td>312</td>
<td>308</td>
<td>304</td>
<td>300</td>
</tr>
<tr>
<td>TiO₂</td>
<td>0.83</td>
<td>0.84</td>
<td>0.85</td>
<td>0.86</td>
<td>0.87</td>
<td>0.88</td>
<td>0.89</td>
<td>0.90</td>
<td>0.91</td>
<td>0.92</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>328</td>
<td>325</td>
<td>324</td>
<td>323</td>
<td>322</td>
<td>321</td>
<td>320</td>
<td>319</td>
<td>318</td>
<td>317</td>
</tr>
<tr>
<td>FeO</td>
<td>124</td>
<td>123</td>
<td>122</td>
<td>121</td>
<td>120</td>
<td>119</td>
<td>118</td>
<td>117</td>
<td>116</td>
<td>115</td>
</tr>
<tr>
<td>MgO</td>
<td>1.29</td>
<td>1.17</td>
<td>1.05</td>
<td>0.93</td>
<td>0.81</td>
<td>0.69</td>
<td>0.57</td>
<td>0.45</td>
<td>0.33</td>
<td>0.21</td>
</tr>
<tr>
<td>CaO</td>
<td>0.77</td>
<td>0.78</td>
<td>0.79</td>
<td>0.80</td>
<td>0.81</td>
<td>0.82</td>
<td>0.83</td>
<td>0.84</td>
<td>0.85</td>
<td>0.86</td>
</tr>
<tr>
<td>MnO</td>
<td>0.17</td>
<td>0.18</td>
<td>0.19</td>
<td>0.20</td>
<td>0.21</td>
<td>0.22</td>
<td>0.23</td>
<td>0.24</td>
<td>0.25</td>
<td>0.26</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.65</td>
<td>1.68</td>
<td>1.72</td>
<td>1.75</td>
<td>1.78</td>
<td>1.81</td>
<td>1.84</td>
<td>1.87</td>
<td>1.90</td>
<td>1.93</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
</tr>
<tr>
<td>Mg</td>
<td>0.27</td>
<td>0.28</td>
<td>0.29</td>
<td>0.30</td>
<td>0.31</td>
<td>0.32</td>
<td>0.33</td>
<td>0.34</td>
<td>0.35</td>
<td>0.36</td>
</tr>
<tr>
<td>Mn</td>
<td>0.24</td>
</tr>
<tr>
<td>Ca</td>
<td>0.20</td>
</tr>
<tr>
<td>Na</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.10</td>
<td>0.11</td>
<td>0.12</td>
<td>0.13</td>
</tr>
<tr>
<td>K</td>
<td>0.01</td>
<td>0.02</td>
<td>0.03</td>
<td>0.04</td>
<td>0.05</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
<td>0.09</td>
<td>0.10</td>
</tr>
<tr>
<td>FeO+MgO</td>
<td>1.39</td>
</tr>
<tr>
<td>Fe₂O₃FeO=MGO</td>
<td>0.83</td>
</tr>
<tr>
<td>XFe₂O₃</td>
<td>0.54</td>
</tr>
<tr>
<td>XFe₂O₃</td>
<td>0.46</td>
</tr>
<tr>
<td>Na+K</td>
<td>0.59</td>
</tr>
<tr>
<td>XNa+Na</td>
<td>0.92</td>
</tr>
<tr>
<td>Mg,Fe,Mg+Fe</td>
<td>0.17</td>
</tr>
<tr>
<td>Al in R2</td>
<td>0.59</td>
</tr>
<tr>
<td>R2*</td>
<td>0.71</td>
</tr>
<tr>
<td>Fe₂O₃+Mg</td>
<td>0.83</td>
</tr>
<tr>
<td>R1=Na+Ca</td>
<td>0.57</td>
</tr>
<tr>
<td>R2=Fe₂O₃+Mg=Mn</td>
<td>0.76</td>
</tr>
<tr>
<td>R3=Al₁,33Ti</td>
<td>0.49</td>
</tr>
<tr>
<td>R1+R2</td>
<td>0.60</td>
</tr>
<tr>
<td>R2*+Al</td>
<td>0.32</td>
</tr>
</tbody>
</table>

نوع: ملء بولیش‌ها و کاغذ شناسی ایران

شماره جدول 1

DOI: 10.29252/ijcm.27.2.385

Downloaded from ijcm.ir on 2021-12-08
شکل ۱ نقشه زمین‌شناسی ناحیه کندر برگرفته از مرجع [۲۵] با تغییر و جایگا‌های ناحیه مورد بررسی بر آن
مجله بورشنشاسی و کاریشناسی ایران

شاهرخی، دلفانی

392

ورزیگی‌های صحرایی و منگنز نگاری و واحدهای تورمالین‌دار

روابط صحرایی بین مجموعه‌های منگنز‌شناختی موجود در منطقه (مجموعه‌های گرانیتی و درگون‌ها)، ارتباط ورژه‌های آپیتیت و یگان‌های‌ای باین مجموعه‌ها و ارتباط ورژه‌های کوارتز-تورمالینی با سنج سنجشی آزمایش گرانبودن و کوارتزبافتی و دعوت‌برتری بررسی شدن. بررسی صحرایی انجام شده، نشان دهنده که در بخش‌های مختلف منطقه، گرانیت‌ها، کوارتزبافت‌ها و گرانیت‌بافت‌هایی مربوط به یکدیپرده تورمالین‌دار منطقه دیده می‌شود. کشف و شناسایی بافت‌های گدنگ‌های تورمالینی آتش وینیک قاره آمریکا به شکل عدیدی کشف و به طول بیش از 1 من بالاتری و بیش از 2 من بالاتر

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

در میان بیش از ۷۰۰ متری بالاتری و بیش از ۲ من بالاتر

(۲). در ناحیه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و

۱۰۰ درصد تورمالین هستند (شکل ۲). در ناحیه مولتیپلاست‌های گرانیت‌های یگان‌ی‌یگان و یگان‌های تورمالین در منطقه گرانیت‌بافت‌های نیز بروت‌بیسیار که مخصوص دارند، که در ناحیه این موارد و
یگماتیت‌ها نیز دارای مقدار پیشتری از نسبت Mg/Mg+Fe بوده و واسطه به قطب فوونیتیت هستند. با توجه به نمودارهای موجود در یگماتیت‌ها، نسبت بازاری از هستند (شکل ۳ب). Mg/Mg+Fe مجموع میزان گرفته‌کن مقدار Fe نیم‌های از مقدار Na/Na+Ca بیشتر است. از طرف دیگر، با استفاده از نمودار بیشتر است.

شکل ۲ در ۱۸ سه ماهی یگماتیت‌های در برابر هد فلورانس و مکاپتیت‌های بسیار دانه درشت (دید به سمت شرق) ب) تصویر پیش‌انداز رگه‌های ایفلیت و آیزنی-یگماتیت تورمالین‌های در سنجک‌های گردوپورتی پرودیت‌های پیاز داده (دید به سمت غرب)، ب) تصویر پیش‌انداز رگه‌های تورمالین‌های در سنجک‌های گردوپورتی پرودیت‌های پیاز داده (دید به سمت غرب)، ب) تصویر پیش‌انداز رگه‌های تورمالین‌های در سنجک‌های گردوپورتی پرودیت‌های پیاز داده (دید به سمت غرب).
شکل ۲ حاکمیت ترکیبی تورمالین‌های ملاتابی (استان ارسالان) در الیاک (نمونه دوتایی Fe/Fe+Mg نسبت به X-vac/X-vac+Na تورمالین‌های در گستره بین شورل-خلوئیت با تمرکز بیشتر در منطقه شورلیت قرار گرفته‌اند، ب) نمونه در Na/Na+Ca نسبت به Fe/Fe+Mg توجه به آن می‌دهد که جایگاه Y همه نمونه‌های مورد بررسی به طور کامل بر نشده است. و ث) نمونه‌های در Fe نسبت به Mg تحت خط ۳ \(\Sigma (Fe+Mg) \) دارای کمتر از Fe و Mg در گستره ب ما مقدار Mg آن از Fe بیشتر است. علامت به کار رفته مانند جدول ۱ هستند.
همه نمودهایی که زیر این خط قرار دارند دارای $\sum(\text{Fe+Mg})=3$ هستند و به صورت جانشینی Al در جایگاه Y قرار دارند. نمونه‌ها در دسته‌گاه Ca قرار دارند. این نمونه‌ها به دستور Ca در دسته‌گاه Y قرار دارند. در با توجه به سطح موجود در ناحیه مورد بررسی دارای $\sum(\text{Fe+Mg})=3$ هستند و با دارا بودن مقدار Mg کمتر از در ناحیه شرولیت قرار می‌گیرند (شکل 3). بر اساس نمودار Na نسبت به Ca در همه نمودهای Mg مردد بررسی، نشانگر مقدار ناجیز ای در ساختار تورمالین است. بر این اساس، وجود AlOMg در جایگاه Y به عنوان جانشینی Al مقدار زیاد در جایگاه Y می‌باشد. همچنین برای نمونه‌های $\text{NaAl}_{4}\text{Mg}_{1}$ از $\text{NaAl}_{4}\text{Mg}_{1}$ و (OH) در دسته‌گاه Y به توجه به سطح موجود در ناحیه مورد بررسی آبی رنگی و تغییرات $\sum(\text{Fe+Mg})=3$ جانشینی های مادری Na^+ و Na^+ نسبت به $\text{Ca}+\text{Mg}^+$ در ناحیه $\text{Ca}+\text{Mg}^+$ لایه Mg و Na^+ در است. $\sum(\text{Fe+Mg})=3$ شکل 4 ب) نشان دهنده تثبیت خTitles معمولاً در درپوش سنتز $\text{MgFe}^2+\text{Al}^3+$ در ناحیه Fe^2+Al^3+ تغییرات Fe در ناحیه $\text{MgFe}^2+\text{Al}^3+$ به پیشنهاد Na^+ در ناحیه $\text{Ca}+\text{Mg}^+$ لایه Mg و Na^+ در است. $\sum(\text{Fe+Mg})=3$ شکل 4 ب) نشان دهنده تثبیت خTitles معمولاً در درپوش سنتز $\text{MgFe}^2+\text{Al}^3+$ در ناحیه Fe^2+Al^3+ T
بحث هستند [120]، با توجه به شکل‌های ۳ تا ۴، بیشتر Fe/Mg و Mg ترکیبات Fe/Mg و Mg با سمت Al و کاهش تهیه‌ای X گزینش داشته و خاک‌های Maکسایی دارد. همچنین ترکیبات Fe/Mg از مقایسه با ترکیبات Fe/Mg و % Mg می‌تواند Fe/Mg و Mg را به ترتیب این‌جا تولید و Fe/Mg و Mg را به ترتیب این‌جا تولید و Mg Fe/Mg و % Mg دارد. بنابراین آلی‌های Fe/Mg موجود در ناحیه ملاتالک‌های Maکسایی است [144].

نتایج ترکیبات Fe/Mg موجود در آرایش‌ها، خودشکل و بدون منطقه‌بندی بوده و در شرایطی مانند بر آلومین بودن % B2O3=2wt، شرایط اسیدی % PH<6.5، متابول می‌شوند [163]. همچنین ترکیبات Fe/Mg موجود در مقایسه با ترکیبات Fe/Mg در جدول ۱ مشاهده می‌شود [163].

شکل ۵ جایگاه ترکیبی ترکیبات Fe/Mg در ملاتالک‌های Maکسایی و آلوپتی‌های Al-Fe-Mg با سمت به آن‌ها ۲: گرایش‌های قوی از چپ به آن‌ها ۳: سگ‌های آلی‌های سه‌گانگین شده با کلسر پایین و سیاه‌پیشتهای غیر مناسبی هستند. با کف فاز اشباع از آلومین ۵: وسیله‌های Maکسایی هستند. با کف فاز اشباع از آلومین ۴: وسیله‌های Maکسایی هستند.

ولایتی‌های و آلوپتی‌های آلوپتی‌های و آلوپتی‌های X را به ترتیب این‌جا T نمودار شده می‌باشد. همچنین ترکیبات Fe/Mg موجود در مقایسه با ترکیبات Fe/Mg در جدول ۱ مشاهده می‌شود [163].

†: گرایش‌های قوی از چپ به آن‌ها ۳: سگ‌های آلی‌های سه‌گانگین شده با کلسر پایین و سیاه‌پیشتهای غیر مناسبی هستند. با کف فاز اشباع از آلومین ۴: وسیله‌های Maکسایی هستند. با کف فاز اشباع از آلومین ۵: وسیله‌های Maکسایی هستند.
در شرایط گروه B، تریل تر بسیار کمتر در مقدار B را در می‌آورد که این مقدار بسیار کمتر از شرایط ماکسانیم به وجود می‌آید [44]. تریل تر بسیار کمتر از شرایط ماکسانیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آورد که این مقدار بسیار کمتر از شرایط ماکsanیم در می‌آور
مراجع

[26] Lotfi M., Shahrokhi S.V., "Cu-Au ore mineralization in Kon\or area(N-Aligoudarz) connecting with relevant geodynamic problems of Masterrungrantoids(NE-loorestan province in Iran)", 7th conference of geological survey of Iran, Isfahan, Iran.-Maning, D.A.C., (2004).
[30] Shahrokh S.V., "Genetic of Kon\or copper and gold mineralization in Aligoudarz area, Lorestan, Iran", 6th European congress on regional geoscientific cartography and information system, Bologna, Italy (2009)

[40] Trumbull R.B., Chaussidon, M., "Chemical and boron isotopic composition of magmatic and hydrothermal tourmalines from the Sinceni