تأثیر آلیاژ Mn بر خواص ساختاری و مغناطیسی نانوذرات فربیت شگویی استرانسیوم

سید ابراهیم موسوی قهفرخی*، مجتبی احمدی، ایرج کاظمی نژاد

گروه فیزیک، دانشکده علوم، دانشگاه شهید جهان اخوان، اهواز، ایران

(دریافت مقاله: 29/12/1165، نسخه نهایی: 29/12/1165)

چکیده: در این پژوهش نانوذرات CuAl۲۹۶ و Fe۱۲۸Mo۹۷ سه‌تایی Al۲۹۶، Mn۹۷ و Fe۱۲۸ در شرایط مختلف در ظرفیت (TGA) خواص نانوی سخت آمیخته (XRD) مورد بررسی قرار گرفته. به منظور مطالعه تغییرات ساختار شکل نانوذرات، FT-IR و ام‌اف‌سی (FESEM) استفاده شده است. مسنگی خواص مغناطیسی نانوذرات به کمک مغناطیس‌سنج به‌دست آمده است. درصد تشکیل Faz Al۵۰یافته شده‌است. نتایج بررسی این افایندگی نشان می‌دهدکه درصد تشکیل فاز Al۵۰ به‌طور میانگین ۱=۰.۵% به‌دست می‌آید. درصد طبقه‌بندی سختی میانه سختی‌های تهیه شده شکل نانوذرات به‌دست می‌آید. این هم‌های کلیه با مقدار مافی‌سازی بالایی به‌دست می‌آید.

واژه‌های کلیدی: تأثیر، آلیاژ استرانسیوم، سل، الکتریکی، خواص ساختاری، خواص مغناطیسی

مقدمه

فربیت شگویی استرانسیوم Cu۲۹۶Fe۱۲۸ به نام Cu۲۹۶Fe۴۸۲۰۰ مشهور است. این فربیت به عنوان یکی از بسیار نادرینانوذرات شگویی با آنتیپارالیتیک است. این فربیت شامل دو درایی R و Fe۱۲۸O۸۰۱۲۰ می‌باشد. در این ساختار، پیک یکه در مقدار مافی‌سازی بالایی به‌دست می‌آید.

در موسوی قهفرخی و شرکایش (1985) [۱۱] اثباتی برای تغییرات ساختار در شرایط مختلف در ظرفیت (TGA) و ام‌اف‌سی (FESEM) که در این مقاله در مورد تشکیل شکل نانوذرات ارائه می‌شود. نتایج بررسی این افایندگی نشان می‌دهدکه درصد تشکیل Faz Al۵۰یافته شده‌است. درصد طبقه‌بندی سختی میانه سختی‌های تهیه شده شکل نانوذرات به‌دست می‌آید. این هم‌های کلیه با مقدار مافی‌سازی بالایی به‌دست می‌آید.

دریافت مقاله: 29/12/1165، نسخه نهایی: 29/12/1165

*Musavi_ebrahim@yahoo.co.uk
روش بررسی

در گام نخست مقادیر نیترات آهن 9 آیه (Fe(NO₃)₃.9H₂O) نیترات استاندارد (Sr(NO₃)₂)، اسید سیتریک (H₃C₆H₇O₇) و پارامین (Mn(NO₃)₂.4H₂O) خلوص برآورده درصد نسبی توزیع و سپس به سیستم بی روش می‌باشد. سه نمونه آزمایشی از دست گرفته شد. سپس محلول مهگن هکسات نهایی شده در 90 درجه سانتی‌گراد قرار داده شد. سپس نمونه 1000 سانتی‌متر می‌باشد. در گام دوم، کاهش وزن نیتروژنی و گرامانژی افتراقی زل خشک (STA 503) توسط گرم‌وزن (DSC) انرژی و تغییرات گرم‌وزنی در دستگاه STA 503 مشاهده شد. در دستگاه STA 503 از سیستم تغییرات داتا و ذاتیت (DTA) در دستگاه STA 503 مشاهده شد.

بحث و بررسی

شکل 2 نمودار وزن نیتروژن (Mn₂O₃) و گرامانژی افتراقی زل خشک (بدون آلسی) را نشان می‌دهد. این سه درصد کاهش وزن نیتروژن در دستگاه STA 503 و دستگاه STA 503 در دستگاه STA 503 مشاهده شد. در دستگاه STA 503، هیدروکسیدی فلزی و اسید سیتریک می‌باشد. این سه درصد کاهش وزن در دستگاه STA 503 مشاهده شد. در دستگاه STA 503، هیدروکسیدی فلزی و اسید سیتریک می‌باشد. این سه درصد کاهش وزن در دستگاه STA 503 مشاهده شد. در دستگاه STA 503، هیدروکسیدی فلزی و اسید سیتریک می‌باشد. این سه درصد کاهش وزن در دستگاه STA 503 مشاهده شد. در دستگاه STA 503، هیدروکسیدی فلزی و اسید سیتریک می‌باشد. این سه درصد کاهش وزن در دستگاه STA 503 مشاهده شد. در دستگاه STA 503، هیدروکسیدی فلزی و اسید سیتریک می‌باشد. این سه درصد کاهش وزن در دستگاه STA 503 مشاهده شد.
بسامد قله‌ها به این دلیل است که اثر بزرگی شعاع بیون مرکز (\(A \)) اثر به بیون آهن (\(A \)) نسبت به بیون آهن (\(A \)) (55.845 g/mol) (44.938 g/mol) cm\(^{-1}\)) دارد. در زل خشک نوارهای جذبی \(327 \) cm\(^{-1}\) و \(371 \) cm\(^{-1}\) مربوط به پیون‌سازی کششی و \(1384 \) cm\(^{-1}\) و \(1583 \) cm\(^{-1}\) مربوط به ای جذب شده توسط زل هستند [21]. نمونه بی آشیپ یکت نشده در زل \(449 \) cm\(^{-1}\) و نمونه آبی‌هادی یکت نشده در زل \(2432 \) cm\(^{-1}\) دارای قله قوچک و تیزی هستند. در حالت که نمونه بی آشیپ یکت نشده جذبی مشابه قله‌های بهن را نشان می‌دهد. این نوار جذبی به دلیل آزادسازی لایه کریستال نسبت به وجود آمد. است [25].

\[\text{شكل 1: نتایج گرم ور زن سنگی و گرم‌اسنجی افتراقی زل خشک} \]

\[\text{SrfTe}_{12-x} \text{Mn}_x \text{O}_{18} \]

\[x = 0, 0.5, 1 \]

\[\text{سبک 2: بینای‌سنجی تبدیل فوریه فروسرخ (FT-IR)} \]

نمودن زل خشک بدون آشیپ و بدون نوار جذب شده با 1 و 0.5 cm\(^{-1}\) رو در سرت ه\(\geq 400 \) cm\(^{-1}\) نشان می‌دهد. در گاست بین \(\geq 3.4 \) باї نمونه بدون آشیپ و یکت نشده تعداد زیادی نوار جذب وجود دارد. این در حالت که در همین گاست سرامیک پای دوم نمونه یکت شده س نوار جذبی مشخصه به ترتیب در \(\geq 598 \) cm\(^{-1}\) و \(\geq 551 \) cm\(^{-1}\) و \(\geq 540 \) cm\(^{-1}\) و \(\geq 540 \) cm\(^{-1}\) وجود دارد. این نوارهای مشخصه مربوط به ساختار شش‌گوشی استراسیمی هستند [21]. از این جا که جرمین و شعاع بیون آشیپ دهنه مولفه‌های ناتورکرد در جایی سامد جذب هستند، دانشنامه با نشانی بیو، بیوی کوچک و بیا سیکتر، نوار جذبی به سمت بسامدهای بالاتر جابجا می‌شود [22]. در نتیجه تغییر ناحیه در

\[\text{SrfTe}_{12-x} \text{Mn}_x \text{O}_{18} \]
شکل ۳ الکوهای پرتو ایکس نانوذرات SrFe۱۲O۱۹ با مقادیر x = ۰، ۰.۵، ۱ و ۲

جدول ۱ دصر فاز با رابطه های شکل، حجم پاکه و چگالی پرتو ایکس برای نانوذرات SrFe۱۲O۱۹ با مقادیر x = ۰، ۰.۵، ۱ و ۲

<table>
<thead>
<tr>
<th>مقادیر x</th>
<th>دصر تشکیل فاز</th>
<th>Vcell (cm³)</th>
<th>d (g/cm³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>۰</td>
<td>SrFe۱۲O۱۹</td>
<td>۵۴۹۰</td>
<td>۴۲۶۰۲</td>
</tr>
<tr>
<td>۰.۵</td>
<td>SrFe۱۱.۵Mn۰.۵O۱۹</td>
<td>۳۳۶۳۰۲</td>
<td>۳۴۲۰۷۵۲</td>
</tr>
<tr>
<td>۱</td>
<td>SrFe۱۱Mn۱O۱۹</td>
<td>۱۰۲۴۵۰۲</td>
<td>۷۲۱۰۹۲۷</td>
</tr>
<tr>
<td>۲</td>
<td>SrFe۱۰Mn۲O۱۹</td>
<td>۶۶۶۱۲۵۲</td>
<td>۵۰۳۰۹۸۲۷</td>
</tr>
</tbody>
</table>
جدول ۲ آنالیز نانوپرکرها با استفاده از فرمول شرر و معادله ویلیامسون- هال و مقدار کشش مولکول شیشه برای نانوذرات Mn با مقادیر ۲ و ۲.۵، ۱ و ۰.۵، x = .

<table>
<thead>
<tr>
<th>مقادیر x</th>
<th>D(نمل) x 10^3</th>
<th>D(شیر)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = 0</td>
<td>۳۸.۶</td>
<td>۴۷۳۲۱</td>
</tr>
<tr>
<td>x = ۰.۵</td>
<td>۳۸.۵۵۷</td>
<td>۴۵.۹۶۶</td>
</tr>
<tr>
<td>x = ۱</td>
<td>۴۴.۸۶۴</td>
<td>۵۳۷۷۷</td>
</tr>
<tr>
<td>x = ۱.۵</td>
<td>۴۱.۸۰۰</td>
<td>۴۹.۲۲۸</td>
</tr>
<tr>
<td>x = ۲</td>
<td>۴۱.۴۸۱</td>
<td>۴۹.۲۲۸</td>
</tr>
</tbody>
</table>

شکل ۲ نمودار تغییرات βcosθ بر حسب sin0 برای نانوذرات SnFe۱۲–Mn۱۰ با مقادیر ۲ و ۰.۵.
شکل ۵ تغییرات اندازه نانولولک‌ها به روش شرر و معادله ویلیامسون–هال.

شکل ۶ حلقه‌های یسمان نمونه بدون آلیشی و نمونه‌های آلیش داده‌های میدان‌های مغنیتی اعمالی با مقدار بیشینه Δk_{Fe} در دماه اتان اتمی که کم‌تر از این نمودار مقادیر مغناطیس اشباع مغناطیسی میدان وادارندگی را به‌دست آورد (جدول ۴). با جاشینی این تاین تغییر می‌گردد. مقادیر مغناطیسی اشباع، موجب آلیش میدان وادارندگی نیز می‌شود. عملکرد می‌تواند موجب کاهش میدان وادارندگی شود، اندکی دانه‌های که در رابطه زیر به H_c مربوط می‌شود [۲۷].

$$H_c = \frac{\mu_c}{\mu_0}$$

(۸)

که در این رابطه، D قطر داخل تک‌حلزه و D_e اندامه دانه‌های آن باشد.

از آنجا که اندازه بحرانی برای شکل بنابراین مشابه می‌باشد برای ۶۵ گزارش تغییرات اندازه نانولولک‌ها با در حال اکثر اکتشافات مختلف نشان می‌دهد، می‌توان نتیجه گرفت که در افزایش اندازه نانولولک‌ها نیز در کامی میدان وادارندگی افزایش است.

به منظور بررسی ریختش شناسی دراز آکتسیل‌های الکترونی رویشی با انتشار میدانی استفاده شده است. نمونه‌های تائیدشده که بالین شده، در شکل ۱ آورده شده است. دیده می‌شود که ریختشنشای و مزودینی دانه‌ها با آلیش دچار تغییر شده است. با استفاده از مقدار آلیش $D_{\text{al}} = 0.5$ در تغییر میدان ناهسناگردی میدان، هم‌اکنون مبنای آلیش به‌دست آمد.

$$m = (2a^1) + (2b^1) + (2c^1) + (2d^1) + (2e^1) + (2f^1)$$

(۷)

با جایگزینی Fe^{3+} به‌بینی Mn^{2+} تغییر می‌کند. از آنجا که گستاور Fe^{3+} مغناطیسی Fe^{3+} از گستاور Fe^{3+} مغناطیسی Fe^{3+} است. با جایگزینی Mn^{2+} به جای Fe^{3+} نمونه‌های آلیشی با کاهش می‌شود. به‌علاوه کاهش میدان وادارندگی به دلیل کاهش میدان ناهسناگردی مغناطیسی در شکل ۷ در نمونه‌های آلیشی و نمونه‌های بدون آلیشی مشاهده شده است [۲۷].

به بررسی ریختش شناسی دراز آکتسیل‌های الکترونی رویشی با انتشار میدانی استفاده شده است. نمونه‌های حل، ارائه شده به‌آورده شده است. دیده می‌شود که ریختش‌نشای و مزودینی دانه‌ها با آلیش دچار تغییر شده است. با استفاده از مقدار آلیش $D_{\text{al}} = 0.5$ در تغییر میدان ناهسناگردی میدان، هم‌اکنون مبنای آلیش به‌دست آمد.
نسبت به نمونه بدون آلیاش، دچار کاهش و چگالی تعداد
ذرات نیز افزایش یافته است، در حالی که با افزایش مقدار
آلیاش به مقدار x اندیشه ذرات افزایش می‌یابد.

شکل 8 که نتایج محاسبه دمای کوری به روش ترزاوی
فراها است، نمودار تغییرات مغناطیسی نمونه‌ها بدون آلیاش و
آلیاش داده شده با x = r بر حسب دما نشان می‌دهد. آن
این نمودار نشان دهنده تغییر ماهیت مغناطیسی نمونه از حالت
فرومغناطیس به حالت پارامغناطیس در دمای کوری است.
دمای کوری اندیشه گیری شده برای نمونه بدون آلیاش برای با

![Graph](https://example.com/graph.png)

جدول 3

<table>
<thead>
<tr>
<th>مقدار آلیاش</th>
<th>M_s (emu/g)</th>
<th>M_r (emu/g)</th>
<th>H_c (Oe)</th>
</tr>
</thead>
<tbody>
<tr>
<td>x=0</td>
<td>49.10</td>
<td>37.01</td>
<td>20.31</td>
</tr>
<tr>
<td>x=0.5</td>
<td>41.75</td>
<td>35.26</td>
<td>40.51</td>
</tr>
<tr>
<td>x=1</td>
<td>49.98</td>
<td>33.24</td>
<td>34.10</td>
</tr>
<tr>
<td>x=1.5</td>
<td>50.57</td>
<td>38.75</td>
<td>37.28</td>
</tr>
<tr>
<td>x=2</td>
<td>49.99</td>
<td>34.35</td>
<td>40.76</td>
</tr>
</tbody>
</table>
شکل 7: تصاویر نانوذرات FESEM با مقادیر $x = 0.5$ و $x = 1$.

شکل 8: تغییرات مغناطیسی بر حسب دما برای نانوذرات $\text{SrFe}_{12-x}\text{Mn}_x\text{O}_{19}$ با مقادیر $x = 0$, $x = 0.5$ و $x = 1$. [DOI: 10.29252/ijcm.27.1.245]
در این پژوهش، نانوذرات
$\text{MnFe}_{12-0.5}\text{Zn}_{0.5}\text{Mn}_{0.5}$ با مقدار 2 و 5 درصدی رایگانی و ریزساختاری و ریزساختاری نمونه شکلی فاز شکوهی را به هم نمونه و ایجاد ذراتی در ابعاد نانومتری را تایید می‌کند. براساس نتایج XRD نمودار بهینه آرایه تشکیل می‌گردد. مقدار بهینه آرایه تشکیل فاز شکوهی، مقدار $x = 0.5$ است. نتایج بررسی خواص مغناطیسی نمونه با استفاده از مکانزم مغناطیسی تشکیل، مغناطیسی و میدان واردشده با افزایش مقدار آرایه است. همچنین نمایی که در نیمه نمونه بدون آلیسی 245°C از سایر نمونه با بالاتر است. به علاوه مغناطیسی نمونه با افزایش دما و افزایش مقدار آرایه کاهش می‌یابد.

مراجع

[3] Amirabadizade A., Rasouli M. R., Sarhaddi R., "Structural and magnetic properties of Co0.5Ni0.5-xMnFe2O4 (x = 0, 0.15, 0.25, 0.35, 0.5) ferrite nanoparticles prepared via sol-gel auto-combustion method", Journal of Advances in Physics, 3 (2013) 267-271.

