خاستگاه الیون در سنگ‌های تراکمیفیک منطقه‌ای ملاطل‌ب و نقش الیون در سیر شکل گیری مادگ

امیرانی عشیرهٔ ۳، فاطمه سرجقیان

1- گروه زمین‌شناسی، دانشگاه پیام‌نور نیشابور
2- گروه زمین‌شناسی، دانشگاه علمی، دانشگاه کرمانستان، سنندج، ایران

(دربای مقاله، ۹۶/۹۱۸۷، سخن‌نامه نهایی)

چکیده: سنگ‌های گرانیتل‌نشین بخش مرکزی نواز سنندج، سرچشمه واقع در استان لرستان، در زوالسیکمی مانند و در محیط قوس قاره‌ای تکسیم شده‌اند. در مجارست این‌ها سنگ‌های تراکمیفیک با کانی‌های الیون، ارتوبریوسن، کلیبولیوسن و آئیپسول رخ‌بند دارند. الیون با مقاطع میکروسکوپی گردشندند و دارای خلیف خردگی هستند. این پیام انست که الیون‌ها به درجات مختلف دستخوش هضم مادگ‌های شده‌اند. انالیز‌های رزیداری پنوماتیک و محاسبه‌ی ترکیب شیمیایی گدازه در تعادل با هر یک از کانی‌ها مایع مادگا به صورت خلیف سرب عشقو دارد. این روند ضعیف برق انرژی خاستگاه مادگ‌های الیون‌ها می‌باشد که با پیشتازی لیزر #Mg# را ناپید می‌کند. پیان‌های فرازی #Mg# مادگا، مادگا، مادگا هنند. الیون تبدیل به الیون مشابه است که کاملاً غیرعادی است. این روند افزایش احتمال بررسی شده‌اند. ۱- الیون، گردنگیتیک اکسیژن و تبلور لیمون‌آسیا آهن، ۲- هضم الیون تبلوریخی، با توجه به مدل‌سازی‌های شیمیایی انجام شده و روند فرازی #Ni# هنند. الیون تبلوریخی.

واژه‌های کلیدی: تراکمیفیک، طوسی‌نی، الیون، هضم و تبلور، الیون، سرچشمه

مقدمه

الیون از جمله کانی‌های است که نش معمولی در روند شکل‌گیری مادگ‌های شده‌اند. شهنگ‌های مادگ‌های توپیسپین‌پز الیون با یک‌چند الیون خاص‌های هم‌ارز، می‌شوند. الیون‌های زمین‌سنگی و می‌باشند. روش‌های سنگ‌زایی مادگ‌های سرب بررسی قرار داده‌اند. الیون در سنگ‌های تراکمیفیک و مادگ‌های خیلی و فرازی، زیست‌های زمین‌سنگی دارد. می‌توان روند خاستگاه الیون‌ها را احتمال به شکلی‌های شیمیایی داشته باشد. [۱۲] یک طبقه‌بندی کانی‌های می‌باشد که با کاهش از تکیه گذاری به الیون، می‌شود. الیون‌های این سنگ‌های افزایش شده‌اند. [۱۲] می‌توان است این الیون‌ها تحت تأثیر مادگ‌های پزشکی سنگ‌پزشک یک کانی‌ریز قرار گرفت.

*توضیح: منبع: تلفن: ۰۹۱۲۳۴۵۶۷۸۹۰، نمایشگاه: پست الکترونیکی: amires@pmu.ac.ir
زمین شناسی عمومی

از نظر تقسیمات زمین‌شناسی، منطقه‌ی مورد بررسی در کنار قرار گرفته است. این نواحی در حدود ۱۵۰۰ کیلومتر و به‌طور تقیی ۲۰۰ کیلومتر یکی از مهم‌ترین پهن‌های ساختاری ایران زمین به شمار می‌آید.

این نواحی از سنجش‌های دگرگونی و شدیداً تغییر شکل انتخابی شکل داده می‌شوند. مجموعه‌ی مورد بررسی به نوعی در بافت‌های مرکزی نوار سری‌مرکزی قرار گرفته است (شکل ۴). بنابراین نواحی یکی از همان مکانیسم‌های وجود دارند که به‌طور کامل می‌توانند به‌صورت دقیق بافت‌های سطحی را در درون سنجش‌های دگرگونی از سنجش‌های جنوبی، به عنوان یکی از سنجش‌های مرکزی نوار سری‌مرکزی قرار گرفته است. این نواحی در حدود ۱۵۰۰ کیلومتر و به‌طور تقیی ۲۰۰ کیلومتر یکی از مهم‌ترین پهن‌های ساختاری ایران زمین به شمار می‌آید.

در این نواحی، مجموعه‌ی مورد بررسی به نوعی در بافت‌های مرکزی نوار سری‌مرکزی قرار گرفته است. این نواحی در حدود ۱۵۰۰ کیلومتر و به‌طور تقیی ۲۰۰ کیلومتر یکی از مهم‌ترین پهن‌های ساختاری ایران زمین به شمار می‌آید.
شکل ۱. نقشه زمین‌شناسی ایران که موقعیت منطقه مورد بررسی، در آن مشخص شده است، بخش زمین‌شناسی توده‌های آبرین ملاتالب که موقعیت سنگ‌های الترامافیک و ارتباط آنها با گرانتونیدها دیده می‌شود.

شکل ۲. الگویی از سنگ‌های فلسیک رختی روی سطح منطقه (به ترتیب گرانتونیدها درون سنگ‌های گرانتورپی، این ویژگی گبای آنت و گرانتونیدها یک پس گرانتورپی (ب) سبب تغییر شده‌اند؛ ب) برخوردگاه تونالیت و گرانتورپی که با وجود برخوردگاه کوتونالیت درون گرانتورپی مشخص می‌شود و دالین بر سپ پیشتر تونالیت می‌باشد (C) تصویر صحرایی از مجموعه سنگ‌های الترامافیک که در کنار تونالیت‌ها قرار دارند و با هدایت اینه‌های رسوبی‌های اوبدی شده‌اند. مزین آنها با تونالیت قابل مشاهده نیست.
هرولیند پیروکسینیت با الیون پیروکسین هورولیندیت رده‌بندی کرد.

از نظر دنیای تبلور کلیه الیون و الیون کلیه است که در ماهی اشکال‌های گردش زیرا به سختی می‌توان درون بوله‌های درشت‌ترین بی‌پتاس و پیروکسین دیده می‌شود (شکل 2). به بخش الیون‌ها سالم و مقیاس تجزیه شدگی هستند. این بوله‌ها به شکل بوده و تقریباً گردش‌هاده‌اند. در حالی که بخشی از بوله‌ها سرپا و کریست تجزیه شده‌اند، برخی از الیون‌ها خارج خورد هنگامی که به سختی الیون‌ها دلالت دارد (شکل 3).

در این سنگ‌ها پیروکسین‌ها به دو شکل از ارتوپیروکسین و کلینوپیروکسین وجود دارد. در برخی موارد از ارتوپیروکسین‌ها به صورت میان‌بردارهای درون کلینوپیروکسین‌ها دیده می‌شوند که نشان می‌دهند که نه همان از این سنگ‌ها، اما سنگ‌های دیگر از دیرینگاه رئولین‌گردی هستند. فرمول‌های خاصی بین کلیه‌ها دیگر اشاره کردهاند که این روش در دیرینگاه آن‌ها دلته‌اند.

گروه آمیفیبرولیت‌های قهوه‌ای، بوله‌های سبیل درشتی را تشکیل داده‌اند که به دلیل حاشی‌های آمیفیبرولیت‌های سبز پوشش‌های سنگ‌پوش. آمیفیبرولیت‌های سبز به صورت میان‌بردارهای نیز درون آمیفیبرولیت‌های قهوه‌ای دیده می‌شوند.

شکل 2: تشکیلات میکروسکوپی از سنگ‌های ارتوپیروکسین منطقه‌هی ملاطیل. الیون پیروکسین و ارتوپیروکسین به صورت میان‌بردارهای و سبیل‌های یک بوله درشت‌ترین کلینوپیروکسین احاطه‌شده‌اند. الیون‌ها شکل غرد شده دارند که گروه‌های حاشی‌های آن‌ها متصل می‌شوند. الیون‌ها به بوله‌های سبز نیز درون و سبیل‌های تشکیلات آمیفیبرولیت‌های قهوه‌ای دیده می‌شوند.

روش بررسی

پس از بررسی و نمونه‌برداری‌های صحرایی، 15 نمونه از بخش‌های مختلف توده ارتوپیروکسین بردشت شدن و پس از تمیز کردن نازک میکروسکوپی، نمونه‌ها به میکروسکوپ قطعی بررسی قرار گرفته‌اند. در پایان سه ماه نمونه که کمترین درجه دگرسانی را داشتند، انتخاب و پس از نرم‌سازی مقاطع نازک صحیق برای تحلیل تایپ درشت‌تریک‌های الکترونی به دانشگاه ملی ایالات ایسلامی ایران ارسال شدند. در آزمایشگاه از ابزار Jeol 8200 Superprobe کاتیا استفاده شد. لازم به ذکر است که ولتاژ خروجی اصلی 15 کیلو ولت بوده است.

سنگ‌نگاری

سنگ‌های ارتوپیروکسین ملاطیلی به دلیل دگرسانی و داشتن باریکه‌هایی از نانوی ماده بالا و جمع‌آوری نموده‌اند که از نظر تغییرات فرمول‌های مختلف رها می‌شود. این رهابافی این سنگ‌ها در داتر نیز حاکی از دستگاه‌های 15 کیلو ولت است. این سنگ‌ها از نبرد و کلینوپیروکسین‌ها از نظر ساختار و ساختار

شکل 3

$Ol = olivine; opx = orthopyroxene; cpx = clinopyroxene; amph = amphibole$
نتیجه‌گیری آماده و منیزیم ماکماگی شکل‌گیرنده ماده برای طبقه‌بندی فراوانی اصلی کاتی‌ها، هدایت به این‌سانی
راندش. برای بررسی این نتایج مختلف فرورفتگی

در محدوده ای را تبدیل شده‌اند. برای طبقه‌بندی

اصلی از ترکیب شیمیایی کانال‌ها کمک

قابل توجهی به تعیین ترکیب شیمیایی ماکماگی

ویژه ترکیب شیمیایی کانال‌ها متاثر از ترکیب

شیمیایی ماکماگی است که از آن می‌شود. از انجا که

عناصر اصلی در کانال‌ها مشخص است (جدول 1)، به

ضریب جدایی که به عنوان مختلف در کانال‌ها گزارش

شده است. می‌توان فراوانی عنصر مورد نظر را در

ماکماگی در تعادل با کانال‌ها (ماکماگی که کانال‌ها از آن می‌شود) محاسبه کرد. بر اساس نتایج، بله، به توجه به اهمیتی که آن دارد، می‌توان

نتیجه فراوانی آهن و منیزیم ماکماگی در تعادل با کانال‌ها مخلوط را با این روش محاسبه کرد. رابطه مربوط به بصورت زیر بیان می‌شود:

\[K_{D,Fe-Mg} = \frac{(Fe/Mg)_{\text{mineral}}}{(Fe/Mg)_{\text{liquid}}} \]

در این رابطه:

- ضریب جدایی نسبت Fe/Mgبرای کانال مورد نظر (K_{D,Fe-Mg})
- این ضریب را می‌توان از طریق منابع علمی در دسترس تهیه کرد.

کانال (ابن نسبت Fe/Mg) با نسبت Fe/Mg با قابلیت از کانال‌ها، از ترکیب کلینوبروکسین و

Fe/Mg در تعداد با کانال‌ها به درصد بیشتر

بدین ترتیب نسبت Fe/Mg با توجه به

یک از کانال‌های الیوتی، ارتورپروکسین و

Fe/Mg نسبت Fe/Mg نسبت Fe/Mg نسبت Fe/Mg این نسبت Fe/Mg نسبت Fe/Mg نسبت Fe/Mg

مقدار K_{D,Fe-Mg} برای الیوتی [14] ارتورپروکسین [15] کلینوبروکسین [16] و آمیبول [17] (0.2 می‌توان این نسبت Fe/Mg با روش الیوتی یا یا

با استفاده

چنین الاطاعتی و با روشی که در بالا به آن اشاره شد، می‌توان نسبت Fe/Mg در تعادل با این یک از کانال‌ها محاسبه شد.

شیمی‌لیتریا

برای تعیین فراوانی عنصر اصلی کانال‌ها، سه نمونه برآی آنالیز

ریزبرداری الکترونی آنتی‌گذاری و نمای آنالیز‌های آنالیز‌ها نجات شده

در جدول 1 از آن شده‌اند. برای این نتایج مختلف فرورفتگی

یونهای [11]، Fe=1.8 تا 22.8 تغییر کرده

است. از آنجا که مقدار کننده محدود کردن تأثیر

میادلات شیمیایی الیوتی با ماکماگی یا کانال‌های اطراف، آنالیز‌ها

رو بخش‌های مرکزی الیوتی انجام شده‌اند. همچنین هیچ

رابطه‌ای مشخصی بین محتوای فرورفتگی و فراوانی عنصر

دهی دهندهٔ نمودار، اینان آمیبول‌های فله‌ها از نوع

پارناسیت و ادینیتی هستند و عدد منیزیم آمیبول‌های فله‌ها

ای از ۲۸ تا ۸۶ در نتیجه‌گیری است.

مقایسه ترکیب شیمیایی الیوتی‌ها با انواع مشابه‌شده

ماکماگی و غیر ماکماگی

الیوتی‌ها ممکن است خاک‌های ماکماگی یا زینک‌ریشی داشته باشد. بنابراین ممکن است بتوان در مقایسه ترکیب شیمیایی الیوتی‌ها با الیوتی‌های دفتری، وسایل‌های فرهنگی آن از نوع ماکماگی هستند یا زینک‌ریشی که در نتیجه بتوان، اطلاعاتی در خصوص خاک‌های الیوتی‌های مورد بررسی به‌دست آورد. این مقایسه در جدول ۳ به دیده می‌شود و ترکیب شیمیایی الیوتی‌ها سایه‌گری الیوتی‌های ماکماگی [5] و زینک‌ریشی [13] می‌باشد. مقایسه شده در این جدول آن

دسته از عنصری که از نظر فراوانی هسته‌‌وشیب به الیوتی‌های مورد بررسی، در این آنها رایج خاصیتی نشان داده شده چنانکه ملاحظه می‌شود الیوتی‌های مورد بررسی از نظر فراوانی عنصر

Ti و Ni, Al, Cr, Fe, Fe, Cu, Na آینه‌ای زینک‌ریشی یا ماکماگی می‌باشد [5] و نیز با الیوتی‌های

زینک‌ریشی از نظر فراوانی

دارند [13].
جدول 1 نتایج آنالیزهای ریزپراش الکترونی کاتیونی الیوتین، اروتوپوروسن، کلینپوروسن و آمفیبول در سنگهای اسپارائمیفیک منطقه‌ای ملاطلب

<table>
<thead>
<tr>
<th>ماده</th>
<th>wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>39.9</td>
</tr>
<tr>
<td>TiO₂</td>
<td>4.3</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>2.3</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.3</td>
</tr>
<tr>
<td>FeOT</td>
<td>0.5</td>
</tr>
<tr>
<td>MnO</td>
<td>0.7</td>
</tr>
<tr>
<td>Na₂O</td>
<td>1.2</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.2</td>
</tr>
<tr>
<td>MgO</td>
<td>1.2</td>
</tr>
<tr>
<td>CaO</td>
<td>88.4</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ماده</th>
<th>wt%</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>55.8</td>
</tr>
<tr>
<td>TiO₂</td>
<td>2.7</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>2.2</td>
</tr>
<tr>
<td>Cr₂O₃</td>
<td>0.1</td>
</tr>
<tr>
<td>FeOT</td>
<td>0.7</td>
</tr>
<tr>
<td>MnO</td>
<td>0.6</td>
</tr>
<tr>
<td>Na₂O</td>
<td>0.7</td>
</tr>
<tr>
<td>K₂O</td>
<td>0.7</td>
</tr>
<tr>
<td>MgO</td>
<td>3.8</td>
</tr>
<tr>
<td>CaO</td>
<td>48.2</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
</tr>
</tbody>
</table>

جدول 2 مقایسه ترکیب شیمیایی الیوتین‌های سنگهای اسپاراکسیفیک ملاطلب با الیوتین‌های مagmaی و زینکورپوسن. زنگ خاکستری بید ساختنی است که فاواری عناصر موجود در الیوتین‌های مagmaی و زینکورپوسن با فراوانی این عناصر در الیوتین‌های مورد بررسی مقبولیت قابلیت ویژه‌ای دارد.

<table>
<thead>
<tr>
<th>عنصر</th>
<th>2.7</th>
<th>3.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>30</td>
<td>22.1</td>
</tr>
<tr>
<td>Mn</td>
<td>5.7</td>
<td>1.3</td>
</tr>
<tr>
<td>Al</td>
<td>58.3</td>
<td>4.3</td>
</tr>
<tr>
<td>Cr</td>
<td>64.7</td>
<td>57.8</td>
</tr>
<tr>
<td>Ca</td>
<td>78</td>
<td>68.3</td>
</tr>
<tr>
<td>Na</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Ti</td>
<td>3.6</td>
<td>3.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عنصر</th>
<th>ppm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ni</td>
<td>70.3</td>
</tr>
<tr>
<td>Mn</td>
<td>3.6</td>
</tr>
<tr>
<td>Al</td>
<td>96.3</td>
</tr>
<tr>
<td>Cr</td>
<td>95.6</td>
</tr>
<tr>
<td>Ca</td>
<td>96.3</td>
</tr>
<tr>
<td>Na</td>
<td>96.3</td>
</tr>
<tr>
<td>Ti</td>
<td>96.3</td>
</tr>
</tbody>
</table>
نیز در سطح‌های تمام‌افیکی در سه‌گره‌ای، از کانی‌های مختلف در سنگ‌های تمام‌افیکی ملانتاب و...
5- Assimilation and Fractional Crystallization

بازویش ملکه را به این شکل به‌بانده می‌کنند که ماکمل‌های بیشتری از این ماده
با گذاره شده تا آنچه

 Cleansing and Fractional Crystallization

برای اینکه مشخص شود که هر چه بیش‌تر، مقدار نیکل
ماکمل یکنی به‌طور تطبیقی، مقدار نیکل
کالی‌های یکنی تصویری می‌کنند مقدار نیکل کالی‌های

ML: 17.56/3691.150/24.11.2.14

[Downloaded from jimi.ac.ir on 2022-02-19]
در حذف 30ppm است؟ این مدل‌سازی شیمیایی با در نظر گرفتن شرایط زیر انجام شده است:
الف) برای رسیدن به مگامیا در تعادل با آمپیلول، کالی‌های ارتووپروفوسن و کلیتوپروفوسن از مگامیا اولیه مبتل شده‌اند.
ب) در ارتووپروفوسن و کلیتوپروفوسن به نسبت‌های مساوی از

gازهای مختلف شده‌اند.
(ج) در حین تب‌ولور، بی‌پوش‌ها به طور بخشی در گازهای هضم شده‌اند.
(د) تکیب شیمیایی بی‌پوش‌ها در درجه بررسی شده در نظر گرفت شده‌اند (جدول ۱۰).
(و) ضربی جدایی نیکل برای ارتووپروفوسن عادل ۵ [۱۹] و ضربی جدایی نیکل برای کلیتوپروفوسن عادل ۱۰ [۱۹] در نظر گرفته شده است.
در چین شرایطی، با مرحل پیش‌شتابی دیپانالو [۲۰] مقدار نیکل موجود در مگامیا نهایی (مگامیا در تعادل با آمپیلول) در حذف 33ppm خواهد بود البته به شرطی که

نسبت بی‌پوش‌های هضم شده به بی‌پوش‌های مبتل شده

عادل ۵ (0.26) باشد. (0.26) نیکل موجود در مگامیای نهایی که از دو روش متفاوت به دست می‌آید (روش ۱: استفاده از ضربی جدایی آمپیلول؛

روش ۲: مدل‌سازی فراوانی AFC)، نا‌ممکن زیادی به یکدیگر

نردیک اند. در طرح ۶ تغییرات نیکل مگامیا در مراحل مختلف

تیب‌ولور با استفاده از آماره روندی AFC (۷) و (FC²)

تیب‌ولور ارتووپروفوسن موثر

(FC²) AFC با یکدیگر مقایسه شده است. در این روند نیکل گذاری نیکل نیکل در ارتووپروفوسن و

کلیتوپروفوسن به نسبت‌های مساوی از مگامیا مبتل شده‌اند.
چانگهای مصارف در مهران مراحل مختلف تیب‌ولور

تیب‌ولور بی‌پوش چشم‌گیر گذاری می‌شود و قادر

نیست ترک مراحل مگامیا در حد ۳۳ppm را توجه نکند.
در این فرآیند، باز از تیب‌ولور می‌یابیم (درصد گذاری

باقیمانده = ۵۱٪) مقدار نیکل به صورت مسی، ولی در فراوانی

هم و تیب‌ولور بی‌پوش، تا زمانی که ۳۰٪ از مگامیا اولیه مبتل شده (درصد گذاری = باقیمانده = ۵۱٪) مقدار

نیکل مگامیا ۳۳ppm ساعدی دارد ولی از این مرحله به بعد مقدار نیکل مگامیا در

حدود 33ppm نابی‌فی می‌ماند.