کانون شبیه، زمین شیمی و خاستگاه کانساه منگنز هلالان، جنوب دامغان

مهدیه مصدق، فرج الله فردوسی

دانشکده علوم زمین، دانشگاه صنعتی شهید رضوی

(دریافت مقاله: ۱۳۹۷/۳/۲۰، نسخه نهایی: ۱۳۹۷/۳/۲۱)

چکیده: کانساه منگنز هلالان، بر نواز انقیشفسی-رسوبی توده - چاه شیرین و بخش شمالی پهن‌های خاستگاهی-رسوبی ایران مرکزی واقع شده است. سنگ‌های رخت‌المنزله‌ای به دست مجموعه دکترزندگی بر تکیه پیدا می‌کنند. این سنگ‌های اصلی تشكل دهنده ماده معدنی بیشر پی‌پلولزیت، پی‌پلولزا و هولاندیت، باونتی و همانیت هستند. ساختار توده‌ای، عدسی نواری و نواری، و به‌اشتهای داده پراکنده پرکننده فضای خالی و جانشینی مهیت‌های سخت و بالا ماده معدنی را تشکیل می‌دهند. دگرگونی‌های موجود در منطقه شامل کاربری، آزیلیتی، سیلیسی و کرکنی هستند. براساس بررسی‌های زمین‌شناسی، بالا بودن سبکی Fe و Co، Ni و بالا بودن مقادیر MnSiO₂ در Cu این نشته‌های منگنز، این شاهد گویای این است که کانساه منگنز هلالان با دو سازوکار، غنی‌شدنگی در آب درآ متوسط سیال‌های گرما، برندومی و تعریق‌شدن شرایط رسوبی دستخوش تغییرات تشکیلی کاسیشن (Eh) و pH در محدوده آبی تشکیل شده و یک کانساه انقیشفسی-رسوبی است. با توجه به پروسه‌های انجام شده، کانساه منگنز هلالان با شیب از برآوردهنده منگنز نوع کووا نشان می‌دهد. با این تفاوت که کانساه منگنز هلالان دستخوش یک فاز مغناطیسی در حد رخساره شیست سبز نیز شده است.

واژه‌های کلیدی: منگنز، کانساه، رسانی، برندومی، نوع کووا، هلالان

مقدمه

انباشت‌های اولیه منگنز در بوسته زمین مربوط به سپس از پایان آرکن متان در ارتباط با پایان سطحی کم عمق بوده است[۱]. تراکم بالای[۲] در آب درآ در زمان آرکن در ارتباط با عدم آب‌سنگ‌های این عصر است[۲]. با روش‌های مختلف به پیوسته‌کردن منگنز در بر. پروتونیک، پسین مربوط می‌شود. و پدیده‌ای این اتفاق آرامی از این آب‌سنگ‌های منگنز در مزرعه‌سنگ‌های این عصر است. در این مرحله از تکامل

پوسته زمین، چندین حوضه رسوبی در مرز زنده تظاهر شدند که با ابناش بسیار منگنز همرSHARE بودند[۳]. در میان‌های آسیایی، بیشترین مقدار منگنز در استرالیا و برزیل، چین، هند، آفریقای جنوبی و اولراین کشف شده است و بیش از ۸۰ درصد منگنز جهان در آفریقای جنوبی و اولراین یافته می‌شود. با توجه به بررسی‌های زمین‌شناسی، تشکیل منگنز علاوه بر

نویسنده مسئول، تلفن: ۹۱۲۱۲۳۷۱۴۳۱؛ پست الکترونیکی: faraj_fardoost@yahoo.com

* DOI: 10.29252/ijcm.26.4.945

[Downloaded from ijcm.ir on 2022-01-08]
 Least squares method, which is widely used in regression analysis to find the line of best fit for a given set of data points. This method minimizes the sum of the squares of the residuals, or differences between the observed values and the values predicted by the model.

Regression Analysis

Regression analysis is a statistical process for estimating the relationships among variables. Regression analysis includes many techniques for modeling and analyzing several variables, particularly for predicting the numerical value of a dependent variable based on the values of one or more independent variables.

Multiple Regression

Multiple regression is the extension of the simple regression model in which the value of one independent variable is predicted based on the values of more than one independent variable. This can be represented symbolically as:

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p + \epsilon \]

where \(y \) is the dependent variable, \(x_1, x_2, \ldots, x_p \) are the independent variables, \(\beta_0, \beta_1, \beta_2, \ldots, \beta_p \) are the coefficients, and \(\epsilon \) is the error term.

Example

Consider a dataset where we want to predict the price of a house based on its size, number of rooms, and location. Using multiple regression, we can find the relationship between these variables and the price.

Conclusion

Regression analysis is a powerful tool for understanding the relationships between variables and making predictions. It is widely used in various fields such as economics, finance, and social sciences for analyzing and forecasting data.
کلریت شیست: در برخی‌های صخره‌ای، واحد کلریت شیست با روند E – W و با ریختار خشن و رنگ سبز همراه با ریژین‌های ناشی از زمین‌ساخت. کم‌پایین و کم‌بوداری بهره‌گیری کانه‌ها و کانه‌دادن را در بر می‌گیرد. کانه‌های اصلی تشکیل‌دهنده این واحد شامل بیوتیت‌های اصلی درشت کلریتی شده، پلاژیوکلاز، کوارتز و مسکویت به صورت رز در زمینه‌های اسفن، رونتی و گره قطعات شکفته‌کننده بلوار از جمله کانه‌های فرعی هستند. بافت این سنگ‌ها شکفته‌های بلوری و ورقه شکفتی بوده و حضور کانه‌های کلریت به طور گسترده در جهت به گرگارگی در واقع به سنگ حالت جهت- یافته و برگارگی فاقدی داده است (شکل 2 ال). ترکیب اویلی سنگ را بر اساس نوع کانی‌های موجود، حد واسط تا بازی در نظر می‌گیرند که در درجه ریختار شیست سنگ دگرگون شده است و سنگ اویلی آنها بر اساس کانی‌های بیوتیت و کانه- شناسی، احتمالا گدازه‌های اندزینی بازالتی بوده است.

مسکویت شیست: در برخی‌های صخره‌ای این واحد با ریختار نرم و سست و با رنگ روشن تا قرمز به همراه سنگ‌های کریستال‌های دگرگون شده، یک کم‌بوداری بهره‌گیری کانه‌ها و کانه‌دادن را در بر می‌گیرد. این واحد با ضخامت متفاوت همراه با میان- لایه‌هایی از مکریت سنگی و بلوری به موارد برگارگی تشکیل می‌شود. کانه‌های اصلی این واحد شامل بیوتیت‌های درشت، مسکویت، سرپیسیت، ارتوز، کوارتز و کلسیت.
شیست‌های سیز ایپیدویی شده: بر اساس شواهد صحرا، این واحد به صورت همرودن با احتمالی رخ های دیگری در منطقه هرمه با ریزه‌گی در اینجی انجام و کاهش قرار داده شید. در این واحد شیست‌های سیز با رنگ سیز چمی دستخوش ایپیدوی شده‌اند. کلیه این تحلیل دهنده ای این واحد شامل ایپیدوت، مسکوت، کوارتز و بلزیوکلاز و شکل‌های دیگر اسفن هستند (شکل 2 ب) ایپیدوت و مسکوت به صورت خطواردهای در امتداد شیست‌وارگی جهت یافته و دارای چین‌خورده‌گی‌های می‌شوند.

است. وجود کلیه‌های میکاپی جو مسکوت و سرسبیت، سیب
شیست وارگی کامل شد. مورد در این واحد مورد غیره، این امر (برگوارگی) بسیار جدید است. است. در این واحد نواهای غنی از میکا (مسکوت و سرسبیت) و غنی از سبیلیکات (کوارتز و فلایسیت‌ها) که در چین‌خورده‌گی شده- اند (شکل 2 ب). تکثیف نواهای غنی از کوارتز نسبت به نواهای غنی از فیلوسفیل‌های سفیده‌ای به ویژه مسکوت و سرسبیت، یکی از مهم‌ترین ویژگی‌های پایدار واحد مسکوت و سرسبیت است.

![شکل 2 اف] تصویر میکروسکوپی از واحد کلریت شیست‌ها جهت پایدار کانی‌های مسکوت، کلریت، کوارتز و گرانیت به صورت قطعات شکل‌های بلو (ب) تصویر میکروسکوپی از این نواهای غنی از میکا (مسکوت و سرسبیت) نسبت به نواهای غنی از کوارتز چین‌خورده در این واحد مسکوت شیست. تصویر میکروسکوپی از این شیست‌های ایپیدویی با حضور کانی‌های ایپیدوت، مسکوت، کوارتز، بلزیوکلاز و اسفن و (ب) تصویر نمونه دستی از توف: Plg : ایپیدوت ; Grt : کوارتز ; Qtz : مسکوت; Chl : مسکوت ; Mus : مسکوت; Epd : گرانیت ; Ca : پلاژیوکلاز ; Sph : اسفالت.
در یکی از کتاب‌های کلاسیک، کـاننژی با شکل شیمیایی معرکه‌ای از
رگه-زیگره‌ها در شیست‌ها و کریستال‌ها دیده می‌شود. این رگه-
زیگره‌ها در برخی از کالی سیلسیس و منگنز هستند. رخت‌گیر
کانسنس توده‌ای، به شکل متونه‌ای ۱۰ متر و با هندسه
عده‌ای نسبت به ضخامت و برخی از کانسنس را شکل می‌دهد. کریستال‌های
این یون رنگ کردن شیست، مسکوتی شیست و سنگ‌های کانسنس دارای
شیمی و میکروسکوپی شیست‌ها در این ایام قابل
مشاهده است. همچنین نمایشگاه‌های پلاکی از
فناوری‌های میکروسکوپی توسط سنگ‌های کانسنس برای
بررسی‌های کانسنس با رفته پره‌های در رشته تولید کلیسی بر
بخش لوزی رخ می‌شود.
توپ لایئی نادرگونه: این ایام در قسمت شمالگین
معمولاً به صورت هرمون و دیگر احتمالاً در ناحیه فاصله در
منطقه رخ‌نمنه دارد. این ایام از جمله سنگ‌های بین
کانسنس شیست‌ها به شکل متونه‌ای ۱۵ متر در کم‌پاین اقی
کانسنس در قرار گرفتن است. هرگونه موجود در این سنگ‌ها
تولید کلیسی بر شده و بایستی با این روش کرده –
به نظر می‌رسد (شکل ۱۲).
در گونه‌ای واحدهای سنگی منطقه مورد بررسی، در اثر
فرآیندهای پیچیده داروگونه‌های کانسنس در کانسار منطقه
هلالان، درگونی می‌تواند رخ داده است. در این سنگ‌ها
بیش از حد سالم د رین، استریت، ندوزیت، گلوبینیت و آلتینیت
کانسنس در کانسار منطقه هلالان به دو شکل اسیدی و
سیلیکاتی دیده می‌شود.
کاتی‌نشین، ساخت و بارضای
براساس مشاهدات صحرایی، نمونه دستی و میکروسکوپی
همچنین آنلایانی یک‌نوت و ادعیت دی‌ها، راکه،
و مزه‌های پلت‌ها به شکل توده‌ای، نواری (شکل ۴)، در
و پر، رگه-زیگره‌ها دلته برای داده نتایج خالی،
جهت‌های و کانسنس در شیست‌ها. کانسنس در کانسار منطقه
هلالان به دو شکل اسیدی و سیلیکاتی دیده می‌شود.
پرپلوژتی، پلیولیت و هولئیدر هب عنوان کانسنس اکسیدی
و بروتیت به عنوان کانسنس منطقه، کانسنس اصلی
تشکیل‌دهنده ماده آهوندی هستند. کانسنس بینر از کانسنس
اسکیدی خود، از جمله پرپلوژتی، پلیولیت و منگانیت
افتخار می‌شود (۱۱). روبه‌کند شیست‌های منگنز گرمایی به
سرعت و اثر اکسیا م (Sn۲) سرعت می‌گیرد. کانسنس
دو و اثر اکسیا م (Sn۲) سرعت می‌گیرد. کانسنس
چنین یک‌نوت و ادعیت دی‌ها، راکه،
و مزه‌های پلت‌ها به شکل توده‌ای، نواری (شکل ۴)، در
و پر، رگه-زیگره‌ها دلته برای داده نتایج خالی،
گونه‌ای واحدهای سنگی منطقه مورد بررسی، در اثر
فرآیندهای پیچیده داروگونه‌های کانسنس در کانسار منطقه
هلالان، درگونی می‌تواند رخ داده است. در این سنگ‌ها
بیش از حد سالم د رین، استریت، ندوزیت، گلوبینیت و آلتینیت
کانسنس در کانسار منطقه هلالان به دو شکل اسیدی و
سیلیکاتی دیده می‌شود.
کلیسیت و سنگ‌چوب از رایج‌ترین باطله‌ها در کانسار منگنز هستند که درجه خلوص ماده معدنی را پایین می‌آورند [14].

شوند، اما به طور مداوم توسط فراپیدهای نانویی (درونرایدی) به فازهای دیگر تبدیل می‌شوند [12]. کانی‌های رسی از جمله مونتморونیت و کلینوکریستال و کوارتز، آسپارتن، والاستون و

شکل ۳ این تصویر صورتی از بافت لایه‌ای و تواری، ب) ساخت لایه‌ای در نمونه دستی، ب) تصویر میکروسکوپی از پیرولوزیت‌های اولیه (نسل اول) بافت رشته‌ای و سوزنی، ث) تصویر میکروسکوپی بافت توده‌ای از کانی پسیلوپلیزیت، ث) تصویر میکروسکوپی از بافت جانشینی (جانشین شدن پسیلوپلیزیت توسط پیروپزیت) و ج) تصویر میکروسکوپی الکترونی که بر اکثر جایی از کانی پرپتین، پیرولوزیت، Ps، پسیلوپلیزیت، و Br بافت می‌باشد.
کانی شناسی، زمین‌شناسی و خاستگاه کانسکر منگنز هلالان جنوب دامغان

جلد ۲۶، شماره ۴، زمستان ۱۳۹۷

کانی به صورت دانه پراکنده در سنگ‌های کمرپایی دیده می‌شود. بلافاصله پرکندگی فضاهای خالی از دیگر بافت‌های دیده شده در کانسکر است که پیشتر در برادر نهایت اکسیدهای منگنز و اغلب پرپزولیت است. تناوب انیمه‌های منگنز (بازار، سیاه) و هرسته‌ها نیز بافت نواری در کانسکر هلالان تشکیل داده است. این بافت نتیجه عرضی مشاهده شده‌است. در دستگاهی میکروسکوپی، وجود یکی از کانسکر اکسیدهای منگنز کنار هزار و نیکلاز دیده می‌شود. هرسته‌های پرکندگی اکسیدهای منگنز در محدودیت کنار هلالون و سنگ‌های کریتیک کرده‌اند.

از دستگاه‌های سیلیکات‌های منگنزی در توالی همراهی اولیه تشکیل شده‌اند. بنابراین کانسکر و بافت‌های کمرپایی شواهدی به گسترش آتش‌نشانی، رشته‌ای زنگ‌هایی در یک محیط دریایی هستند. برای اینکه کانسکر شناسی و ساخت بافت‌های منگنزی در کانسکر هلالان، توالی هم‌زمانی کانسکر در چهار مرحله بروندی، رسوبی، درون‌زاپی، درکوئنی و پروتزایی (هوازدگی) در جدول (۱) نشان داده شده است.

زمین‌شناسی

به منظور بررسی روابط زمین‌شناسی در سنگ‌های کانسکر منگنز، از استفاده از نتایج تجزیه شیمیایی ۳۲ نمونه (جدول ۲) خروجی از عناصر اصلی، ژنیو و کمیاب در یکی از میان نمونه‌ها استفاده شده است. اینکه تحقیق‌های منگنزی، به‌ویژه تحقیق‌های هنگام منگنز، مهم است. در منابعی از اصلی مقداش، آهن و تنمنی‌برای تحصیل کانسکری اکسیدهای منگنز مهم می‌باشد. براساس بررسی‌های انجام شده، تنمنی باین Al، Br، Ca و Mn، و همچنین تراکم باعث عناصر در تداخل و ناشناخته‌می‌شوند. با این حساب، در نمونه‌های مورد بررسی، قرار گرفتن با این نتایج می‌باشد. این عناصر ممکن است در اثر تبادل بین آهن تغییر پیدا کرده.

الکتریکی و پرپزولیت با پرپزولیت کانی غالب منگنز است که به صورت اولیه (نسل اول) با بافت رشته‌ای و بی‌روز پرپزولیت (نسل دوم) با بافت نواری دیده می‌شود. در پرپزولیت، شکل‌گیری کانی‌ها در کانسکر منگنز در اکسیدهای سیلیکاتی پرپزولیت، کانسکر و در نواری، کانی‌ها با توجه به شکل‌گیری، کانسکر منگنز بهترین کانی است. بافت قوی‌ترین کانسکر است. در میان‌آرایه، ممکن است بافت جایگزینی پرپزولیت و پرپزولیت (نسل سوم) با بافت‌های سیلیکاتی منگنز (نسل چهارم) در نواری، کانسکر و پرپزولیت است. شکل اولیه کانی پرپزولیت در کانسکر منگنز معمولاً با حالت ریزه ییکنی دیده می‌شود.

[۱۵] در کانی پراونیت (سیلیکات منگنز) (نسل سوم) از معمول‌ترین کانی‌های منگنز با خاستگاه کمرپایی است. این کانی در نمونه‌های دیسی به رنگ خاکستری و یا رنگ خاک سیاه قابل شناسایی است. در اکسیدهای سیلیکا به رنگ تری دیده می‌شود. به‌ویژه در نمونه‌هایی که با کمیت کانسکر بسیار کمی و در نواری و پرپزولیت با حالت ریزه ییکنی دیده می‌شود.

[۱۶] در اکسیدهای سیلیکاتی گروهی از کانسکری‌ها در کانسکر هلالان که اکسیدهای منگنزی در نواری کنار هلالون و سنگ‌های کریتیک کرده‌اند.
کانسارها سپار اهمیت دارد. یا هنگری مسی‌های در وسایل آتش‌زدایی آهنگی آسانی کانسارها که می‌تواند تولید کننده می‌باشد [123]. [4] به هنگری مسی‌های در وسایل‌های آهنگی آسانی کانسارها که می‌تواند تولید کننده می‌باشد.

[4] در کانسارها گرمکی، منگزن، مقادیر بایینی Zn (7-283) و Ni (5-364 ppm) Cu (5-1000ppm) به رسم سریع این کاسار نسبت داده شده است [124].

جدول ۱ ۱۱۰ میکرولیتر کانساری کانسار منگزن هالیان

<table>
<thead>
<tr>
<th>Stage</th>
<th>Volcano-Sedimentary</th>
<th>Diagenesis</th>
<th>Metamorphism and deformation</th>
<th>Weathering (Supergene)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrolusite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Psilomelan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Braunit</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hollandite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hematite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyrite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quartz</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gypsum</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Textures</th>
<th>Masive</th>
<th>Banded-Laminated</th>
<th>Disseminate</th>
<th>Replacement</th>
<th>Vain-Veinlet</th>
<th>Colloform</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Minerals</th>
<th>SiO₂</th>
<th>TiO₂</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MnO</th>
<th>MgO</th>
<th>CaO</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-1</td>
<td>126</td>
<td>77.9</td>
<td>15.1</td>
<td>19.5</td>
<td>0.3</td>
<td>0.1</td>
<td>63</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>A-2</td>
<td>127</td>
<td>78.3</td>
<td>15.0</td>
<td>19.6</td>
<td>0.4</td>
<td>0.1</td>
<td>63</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>A-3</td>
<td>128</td>
<td>78.6</td>
<td>15.1</td>
<td>19.7</td>
<td>0.3</td>
<td>0.1</td>
<td>63</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>A-4</td>
<td>129</td>
<td>78.8</td>
<td>15.2</td>
<td>19.8</td>
<td>0.3</td>
<td>0.1</td>
<td>63</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>A-5</td>
<td>130</td>
<td>79.1</td>
<td>15.3</td>
<td>19.9</td>
<td>0.3</td>
<td>0.1</td>
<td>63</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>A-6</td>
<td>131</td>
<td>79.4</td>
<td>15.4</td>
<td>20.0</td>
<td>0.3</td>
<td>0.1</td>
<td>63</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>A-7</td>
<td>132</td>
<td>79.7</td>
<td>15.5</td>
<td>20.1</td>
<td>0.3</td>
<td>0.1</td>
<td>63</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>A-8</td>
<td>133</td>
<td>79.9</td>
<td>15.6</td>
<td>20.2</td>
<td>0.3</td>
<td>0.1</td>
<td>63</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>A-9</td>
<td>134</td>
<td>80.2</td>
<td>15.7</td>
<td>20.3</td>
<td>0.3</td>
<td>0.1</td>
<td>63</td>
<td>0.1</td>
<td>1.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

XRF مقداری درصدی اکسیدهای اصلی بر حسب وزنی به دست آمده از روش شمارش نیم‌نَهش‌ها.
جدول ۳ مقدار عناصر فرعی و کمیاب برحسب ppm

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ag</td>
<td>100</td>
</tr>
<tr>
<td>Pb</td>
<td>150</td>
</tr>
<tr>
<td>Cu</td>
<td>50</td>
</tr>
<tr>
<td>Cr</td>
<td>10</td>
</tr>
<tr>
<td>Mo</td>
<td>2</td>
</tr>
<tr>
<td>Bi</td>
<td>1</td>
</tr>
<tr>
<td>Fe</td>
<td>100</td>
</tr>
<tr>
<td>Co</td>
<td>1</td>
</tr>
<tr>
<td>Ni</td>
<td>1</td>
</tr>
<tr>
<td>Ti</td>
<td>1</td>
</tr>
<tr>
<td>Nb</td>
<td>5</td>
</tr>
<tr>
<td>Zn</td>
<td>10</td>
</tr>
<tr>
<td>Na</td>
<td>5</td>
</tr>
<tr>
<td>K</td>
<td>100</td>
</tr>
<tr>
<td>Ca</td>
<td>100</td>
</tr>
<tr>
<td>Mg</td>
<td>10</td>
</tr>
<tr>
<td>Mn</td>
<td>10</td>
</tr>
<tr>
<td>Al</td>
<td>100</td>
</tr>
<tr>
<td>As</td>
<td>1</td>
</tr>
<tr>
<td>Cd</td>
<td>0.1</td>
</tr>
<tr>
<td>Rb</td>
<td>0.1</td>
</tr>
<tr>
<td>Be</td>
<td>0.75</td>
</tr>
<tr>
<td>Sr</td>
<td>1.3</td>
</tr>
</tbody>
</table>

(HSEF) عناصر با شدت میزان بالا

<table>
<thead>
<tr>
<th>عنصر</th>
<th>میزان (PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>۲۴</td>
</tr>
<tr>
<td>Zr</td>
<td>۲۳</td>
</tr>
<tr>
<td>P</td>
<td>۲۰</td>
</tr>
<tr>
<td>La</td>
<td>۲۰</td>
</tr>
<tr>
<td>Ce</td>
<td>۲۰</td>
</tr>
<tr>
<td>Sc</td>
<td>۲۰</td>
</tr>
</tbody>
</table>

(REE) عناصر خاکی نادر

<table>
<thead>
<tr>
<th>عنصر</th>
<th>میزان (PPM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn</td>
<td>۱۰</td>
</tr>
<tr>
<td>Fe</td>
<td>۱۰</td>
</tr>
<tr>
<td>Co</td>
<td>۱۰</td>
</tr>
<tr>
<td>Ni</td>
<td>۱۰</td>
</tr>
<tr>
<td>Cu</td>
<td>۱۰</td>
</tr>
<tr>
<td>Zn</td>
<td>۱۰</td>
</tr>
<tr>
<td>Cr</td>
<td>۱۰</td>
</tr>
<tr>
<td>Mo</td>
<td>۱۰</td>
</tr>
<tr>
<td>Bi</td>
<td>۱۰</td>
</tr>
<tr>
<td>Y</td>
<td>۲۴</td>
</tr>
<tr>
<td>Ce</td>
<td>۲۴</td>
</tr>
<tr>
<td>Sc</td>
<td>۲۴</td>
</tr>
</tbody>
</table>

گرفته است [۳۱]. با توجه به این نمو، کانسارتی های فرمولگذاری نتوان از سایر نسبت به کانسارتی گرماگ از گینه گری در جامهای ناپالی در بازخوردگان [۲۲]. نمونه‌های این اثر بر روی کانسارتی گرماگی می‌گیرد (شکل ۴ ب). عناصر کمیاب (Co, Ni, Cu) و عناصر خاکی نادر هنگام تولید کارخانه زنگ توسط اکسیدهای برونی آبی شوند [۱۲]. گفتگو آنها نسبت کمتر از آب در باسی. عناصر کمیاب اکسیدهای اولیه منگنز که از اجزای اصلی محلول‌های کم گرماگی هستند از منگنز سیستمی [۲۲]. از آنها که یک تراکم عناصر خاکی نادر در محلول‌ها هر گرماگی کم است و فعالیت‌های انیشتنا می‌شوند [۲۲].
شکل ۴الف) نمودار عکس‌یابی [۲۵]، ب) نمودار دو تایی (Co/Zn - (Co+Ni+Cu ppm) نمودار سه Co - Ni - Zn تایی [۲۶] و جایگاه نمونه‌های کانسار منگنز مورد بررسی و ت. نمودار تراکم La نسبت به Ce [۲۷] و جایگاه نمونه‌های کانسار موردنظر در ان. مورد بررسی در آن نسبت La/Ce بین ۰.۲ تا ۲ تغییر می‌کند (شکل ۴ب)، که مشابه کانسارهای گرمایی است. به‌طور کلی، پیش‌بینی و چگونگی تشکیل کانسار منگنز هلالان، با توجه به اینکه کانسارهای منگنز در محیط‌های زمین‌سختی مختلف، شکل می‌شوند، بررسی شرایط تشکیل آنها مهم و اهمیت موضع بوده است [۲۸]. براساس بررسی‌های این پژوهش، آزمایش‌گاهی انجام شده کانسار منگنز هلالان با دو سازوکار الکتروکسی و رسوبی تشکیل شده است و ساختاری گسیلی در مرحله برون‌مایی نقش مجزای انتقال‌شده داشته‌اند.

کانسارهای آبزد منگنز از کانسارهای گرمایی زیردریایی، از طریق روابط بین عناصر Co و Ni، Zn تا کناره منگنز ساخته و مورد بررسی خستگی گرمایی زیردریایی را نشان می‌دهند (شکل ۴ب). نسبت La/Ce در کانسارهای گرما به La/Ce مشابه Ce در کانسارهای گرمایی می‌باشد. آب دریا و حدود ۲۸ است. اما سایر کانسارها نسبت به آب دریا در این Ce در غنی‌شدنی نشان می‌دهند و نسبت Ce به La به La به Ce در کانسارهای ۲۵/۰ است [۲۷]. در نمونه‌های تجزیه شده،
جلد 26، شماره 4، بهمن 1397
کانیشناسی، زمین‌شیمی و خاک‌گاه کاناسی مینگز هلاندی، جنوب دامغان

955

بطور کلی می‌توان برای فرایند کاناسی‌سازی سه مرحله زیر را در نظر گرفت:

مرحله درون‌وزایی: در مرحله بعد، با دیگر فرآیندهای آشکار-سازی، می‌تواند رشد و لایه‌هایی از دیگر ماده‌های اندزیتی-نیتریکی، تون، لایه‌گیر و سنگ آهک گیر ماده‌های شفاف و تکاملی شدنماد (شکل 5) درون‌وزایی شکل گرفته و از منابع متغیر، سیلیسیا، شین، اتانول، جانشین درون‌وزایی باعث شدنیست. کاناسی‌سازی این پیشانی به گونه‌ای است که از این پیشانی، یکی از گونه‌های منگزیس شدنی می‌شود. در این مرحله، کاناسی‌سازی آب، می‌تواند رشد شود و این گونه‌های منگزیس شدنی به شکل‌گیری شکل‌های نواری و عدسی ماده عمدی مشوند.

مرحله درون‌وزایی: آب و ترکیب‌های مایع در سطح شیشه، سیلیسیا استاند (شکل 5). در این مرحله، می‌تواند رشد فرآیندهای شفاف و باعث شدنیست. این اهست یکی از گونه‌های منگزیس ماده مشوند. پروپوزیت به صورت نانوی نشی شده است. این مرحله که در این مرحله، می‌تواند رشد فرآیندهای شفاف و باعث شدنیست. این اهست یکی از گونه‌های منگزیس ماده مشوند. در این مرحله، می‌تواند رشد فرآیندهای شفاف و باعث شدنیست. این اهست یکی از گونه‌های منگزیس ماده مشوند.
الف

Sea water

الب

Sea water: Na⁺, Mg²⁺, O₂, HCO₃⁻, Cl⁻, SO₄²⁻

Hydrothermal solutions:
Mn²⁺, Fe²⁺, SiO₂ (aq), Ca²⁺, H₂CO₃

شکل 5. مدل زننیکی فراپید کانتزایی کناسار منگنز هلالون:الف) مرحله برودنی - رسوبی; ب) مرحله درونریزی; ب) مرحله ددرگونی.
مقایسه کاسار منگنز هلاران با نوع مالو بر اساس قیود پایداری مالو و بیج [39]. کاسار منگنز انتشاری-رسوی به‌صورت نوع قبس، کوبا، المیک پنیسولا و فرانکسین تهیه می‌شود. مقایسه صورت گرفته نشان داد که وزن‌گی‌های کاسار منگنز هلاران از جمله محیط زمینی شکل، محیط زمینی شناسی نه‌شست، سنگ‌هایی

جدول ۴ مقایسه کاسار منگنز نخل‌های با انواع مختلف کاسار منگنز انتشاری-رسوی بر اساس رده بندی مالو و بیج [39].

<table>
<thead>
<tr>
<th>نوع قبرس</th>
<th>نوع المیک</th>
<th>نوع کوبا</th>
<th>کاسار منگنز هلاران</th>
<th>وزن‌های شاخه</th>
</tr>
</thead>
<tbody>
<tr>
<td>پنیسولا</td>
<td>کوبا</td>
<td>پنیسولا</td>
<td>کوبا</td>
<td>پنیسولا</td>
</tr>
<tr>
<td>مالو</td>
<td>سختی</td>
<td>کاسار منگنز هلاران</td>
<td>مالو</td>
<td>سختی</td>
</tr>
<tr>
<td>وزن‌های شاخه</td>
<td>کاسار منگنز هلاران</td>
<td>مالو</td>
<td></td>
<td></td>
</tr>
<tr>
<td>شکل هندسی مایه</td>
<td>مقاومت نخلی</td>
<td>مالو</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ضریب</td>
<td>مالو</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>عناصر فلزی</td>
<td>مالو</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>پنیسولا، سختی</td>
<td>مالو</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عناصر فلزی</th>
<th>کاسار منگنز هلاران</th>
<th>مالو</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mn, Fe, Ni, Co, Zn, Cu</td>
<td>Mn, Fe, Cu, Ba, Hg</td>
<td>Mn, Fe, Cu, Ba, Hg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>عناصر فلزی</th>
<th>گردسانتی</th>
<th>عناصر فلزی</th>
</tr>
</thead>
<tbody>
<tr>
<td>کاسارهای سولفیک</td>
<td>کاسارهای سولفیک</td>
<td>کاسارهای جوجه</td>
</tr>
<tr>
<td>کاسارهای جوجه</td>
<td>کاسارهای جوجه</td>
<td>کاسارهای جوجه</td>
</tr>
<tr>
<td>کاسارهای واسطه</td>
<td>کاسارهای واسطه</td>
<td>کاسارهای واسطه</td>
</tr>
<tr>
<td>کاسارهای بیشتر</td>
<td>کاسارهای بیشتر</td>
<td>کاسارهای بیشتر</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>مراجع</th>
<th>مراجع</th>
</tr>
</thead>
<tbody>
<tr>
<td>[36]</td>
<td>[39]</td>
</tr>
<tr>
<td>[36]</td>
<td>[39]</td>
</tr>
<tr>
<td>[36]</td>
<td>[40]</td>
</tr>
</tbody>
</table>
برداشت
کانسیار منگنز هلالان، به شکل چینه‌سان (لاهی و عدسی شکل) و هیپرون با لایه‌بندی با کانسیاری با پروپوزیت، پسولمان، هولدانیت، بروآینت و هماییت بر مجموعه آنتفیئاسی در سری تروت- جاه شیرین قرار گرفته است.

سنگ‌های رخ‌موشی یافته در منطقه شامل مجموعه دگرگونی با ترکیب سنگ‌سنگ‌های اسیدی، گیلبت، شیست، مرمر، آهن، دولومیت و ماسه‌سنگ‌های کمی دگرگون شده با سی زوراسیک پیشین ندارند. بررسی‌های انجام شده نشان دهنده عملکرد فرااندازه‌ای درگذشته‌ای، باران‌وار، تحرک مجدد و تغییرات ریخت‌گذاری در این کانسیاری است. براساس بررسی‌های زمین-شیمیایی، بالا بودن نسبت Mn/Fe و رابطه‌ای بین تراکم Fe و بالا بودن مقادیر Zn، Cu و بالا بودن زیستگاه Mn به عنوان شاخصی از غنی‌شدن و تخلیه‌ی سیال‌های گرانی‌زی در دریاپیم (پیرورنمی) در این نسبته هستند.

بنا براین شاخص‌گذاری این است که کانسیار منگنز هلالان با دو سازوکار غنی‌شدنگی در آب دریا توسط سیال‌های گرانی‌زی برون‌پیمه و به فاصله‌ی تغییرات رسوبی در محیط دریایی تشکیل شده و یک کانسیار آنتفیئاسی- رسوبی است. بنا به ، بررسی‌های انجام شده، کانسیار منگنز هلالان بیشترین شبهات را با کانسیارهای منگنز نوع کویا نشان می‌دهد. با این تفاوت که کانسیار منگنز هلالان دچار یک فاز دگرگونی در حد رخ‌موشی شیست سبیلی‌نشد است.

مراجع
area, Fars Province, southwestern Iran by using petrographic and geochemical data", Ore Geology Reviews 80 (2017) 229-249.
[22] Hein J. R., Schulz M. S., Dunham R. E., Stern R. J., Bloomer S. H., "Diffuse flow hydrothermal manganese mineralization along the active Mariana and southern Izu-Bonin arc system,
geochemistry", Revista Mexicana de Ciencias Geológicas 30(3) (2013) 482-499