زمین شیمی روانه گدازه‌های هیدروماگماپی کراتاسه در منطقه سبارده، شمال شرق قزوین،
البرز مرکزی

راضیه جعفری سویق، عباس آسیابانی‌پناه، محسن نصیرآبادی

گروه زمین‌شناسی، دانشکده علوم زمین، دانشگاه بین‌المللی امام خمینی (ره) قزوین

دریافت مقاله: ۲۷/۹/۹۴، نسخه نهایی: ۹۵/۱۱/۱۴

چکیده: سنگ‌های آتش‌نشانی قلبی و چینسان منطقه‌ای مربوط به شمال شرق قزوین واقع در پنهن البرز مرکزی به صورت هم‌سازی بر سنگ‌های کرتاسه‌ای بیشتر سازند تایوزکو قرارگرفته‌اند. این سنگ‌ها از نظر بافت بسیار زیاده و یک‌پوشی هستند و از نظر کاتای شناسی با داشتن رنگ‌های بلورها و رنگ‌سازی‌های پلاژیوپلاس، بی‌پروکسین، میانی، نیش‌های کدسته در یک زمین‌سنجی شیشه‌ای مشخص می‌شوند. ولی در بین توالی سنگ‌های واقع در کرتاسه‌ای بیشتر از نظر بافت آزادی و ویژگی‌های بافتی زیرین و جدید دارند. بافت اکثری ریز‌سان‌های فایلیک، ندارند. به‌طور کلی، ریز‌سان‌های فایلیک، ندارند. در این پژوهش، کمتر از سنگ‌های واقع در کرتاسه‌ای، می‌تواند سیری را از نظر تکنیکی، بافت‌های خاکی‌الکترین در نظر گرفته شود. ناحیه‌های خاکی‌الکترین برای سیستم‌های اروپا در نظر گرفته شده‌اند. بافت‌های خاکی‌الکترین برای سیستم‌های اروپا در نظر گرفته شده‌اند. بافت‌های خاکی‌الکترین برای سیستم‌های اروپا در نظر گرفته شده‌اند. بافت‌های خاکی‌الکترین برای سیستم‌های اروپا در نظر گرفته شده‌اند. بافت‌های خاکی‌الکترین برای سیستم‌های اروپا در نظر گرفته شده‌اند. بافت‌های خاکی‌الکترین برای سیستم‌های اروپا در نظر گرفته شده‌اند.
زاغرس از اهمیت در روانشناسی و پرورش‌درمان در برخورد است. به طوری که افیون‌های زاغرس در پذیرش و اطراف خرد و قاره آسیا مرکزی و نیز برخی توده‌های نشانه‌های نشانده شده سرمایه‌گذاری کرده‌اند. بنابراین، انتخاب داده‌های این روش نگهداری می‌تواند بی‌خور را در مورد این روش نگ‌
پرچم‌های آب‌نما برای یک گروه از قطعات نیمه‌گرد بیشترین حضور می‌رسد.

(شکل ۲) و میزان حضورها با رسیدن به این روند به ترتیب تغییر می‌یابد.

تا زاویه‌دار تیره در یک زمین‌های پر حفظ به رنگ روشن تر است.
جدول 1: نتایج تجزیه شیمیایی عناصر اصلی (برحسب درصد وزنی) و کمیاب (برحسب ppm) در نمونه‌های منطقه سیارده، شمال شرق قزوین

<table>
<thead>
<tr>
<th>عنصر</th>
<th>S-9a</th>
<th>S-10</th>
<th>S-11a</th>
<th>S-12</th>
<th>S-13</th>
<th>S-14</th>
<th>S-15</th>
</tr>
</thead>
<tbody>
<tr>
<td>SiO₂</td>
<td>43.7</td>
<td>45.2</td>
<td>44.7</td>
<td>43.5</td>
<td>42.9</td>
<td>43.5</td>
<td>43.6</td>
</tr>
<tr>
<td>TiO₂</td>
<td>3.3</td>
<td>3.5</td>
<td>3.9</td>
<td>3.8</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Al₂O₃</td>
<td>12.8</td>
<td>15.6</td>
<td>15.9</td>
<td>16.3</td>
<td>17.0</td>
<td>17.4</td>
<td>17.3</td>
</tr>
<tr>
<td>Fe₂O₃</td>
<td>16.3</td>
<td>10.7</td>
<td>10.8</td>
<td>10.6</td>
<td>10.2</td>
<td>9.9</td>
<td>9.9</td>
</tr>
<tr>
<td>MgO</td>
<td>5.8</td>
<td>6.4</td>
<td>6.6</td>
<td>6.8</td>
<td>6.0</td>
<td>4.3</td>
<td>4.3</td>
</tr>
<tr>
<td>CaO</td>
<td>6.8</td>
<td>8.0</td>
<td>10.3</td>
<td>8.0</td>
<td>4.2</td>
<td>4.7</td>
<td>7.7</td>
</tr>
<tr>
<td>Na₂O</td>
<td>3.7</td>
<td>4.7</td>
<td>4.8</td>
<td>3.7</td>
<td>3.6</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>K₂O</td>
<td>1.7</td>
<td>1.5</td>
<td>1.4</td>
<td>1.6</td>
<td>1.4</td>
<td>1.2</td>
<td>1.2</td>
</tr>
<tr>
<td>P₂O₅</td>
<td>1.5</td>
<td>1.4</td>
<td>1.5</td>
<td>1.3</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>SO₃</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
<td>0.7</td>
</tr>
<tr>
<td>ZnO</td>
<td>0.9</td>
<td>0.8</td>
<td>0.8</td>
<td>0.8</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>ZrO₂</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
</tr>
<tr>
<td>SrO</td>
<td>3.6</td>
<td>3.4</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>BaO</td>
<td>2.3</td>
<td>2.6</td>
<td>2.8</td>
<td>2.7</td>
<td>2.6</td>
<td>2.6</td>
<td>2.6</td>
</tr>
<tr>
<td>Cr</td>
<td>3.4</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
<td>3.2</td>
</tr>
<tr>
<td>Y</td>
<td>2.5</td>
<td>2.6</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
<td>2.7</td>
</tr>
<tr>
<td>Yb</td>
<td>3.5</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
<td>3.3</td>
</tr>
<tr>
<td>Lu</td>
<td>1.6</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>Sc</td>
<td>2.8</td>
<td>3.0</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
</tr>
<tr>
<td>Co</td>
<td>4.9</td>
<td>5.1</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
<td>5.3</td>
</tr>
<tr>
<td>V</td>
<td>5.2</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
<td>5.1</td>
</tr>
<tr>
<td>Ga</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Zn</td>
<td>1.7</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
<td>1.9</td>
</tr>
<tr>
<td>Cu</td>
<td>0.7</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Be</td>
<td>0.5</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
<td>0.6</td>
</tr>
</tbody>
</table>

جمع‌سازی: 92.7%
سنجش‌نگاری توصیفی
نمونه سنگ‌های بردانشت شده از بیشتر روشتهای مورد بررسی، کاتی‌سانسه مشاهده می‌گردد و همانند مقياس ماکروسکوپی، در مقابل ماکروسکوپی نیز از نظر بالینی و اندوزه‌دهان مهگن هستند و با داشتن بزرگ‌ترین بلوپلاکز بلازپلاکز (10/%)، الیپس (5/%) و کمر از یک اندوزه‌دهان و اسیده‌ای اهم نیت‌دان در یک بافت شیشه‌ای ریزکنگی پورپری و تراکمی مشخص شوند (شکل ۳، الف، ب). در ادامه به بررسی ویژگی‌های سنگ‌نگاری نمونه‌ها در مقياس ماکروسکوپی می‌پردازیم:
بلازپلاکز بیشتر بلازپلاکز‌های این سری گذاری‌ها به صورت ریزکنگی و گاه ریزدرشت بلوری دیده می‌شوند. ریزکنگی‌های بلازپلاکز گاهی بدون جهت‌بندی (شکل ۳، الف) و گاه با یک جریان و با شکل‌های دم پرستویی (شکل ۳ ب) دیده می‌شوند که این جوهر نشانگر دهان‌اندازی ناشی از هنگام سرد شدن سریع است [28]. با لنزیون درصد حجمی ریزکنگها

شکل ۲ تکامل سنگ‌های دریکی از رخنمون‌های منطقه مورد بررسی: الف) فراگیری سازند نقشه بر سازند شمشک؛ ب) روشهای گذارهای چینه‌سیان منطقه سپارده ب) دردهای اتفاقی دریکی از روهنه‌ها ت برش آتشنشانی شیشه‌ای آواز شال فلزات گرد مافیک در زمینه فلزیک.
ابعادهای اسفرولوئی در مرحله بیدی و طی مرحله انجام گرفت که هزارها در نتیجه بای تبلور و در اثر گازهای انششایی ایجاد شدند.

شکل ۲ تصاویر میکروسکوپی رونه گدازه‌های مورد بررسی: (الف) بافت شیشه‌ای پذشته (نمونه a(S11)) شامل ریزستگه‌های بلازیوکلاز، پیروکسن و کاتی‌های کدر در یک خمیره شیشه‌ای; (ب) بافت تراکی (نمونه 15(S1)) شامل ریزدرشت بلورها و ریزستگه‌های جهت بافت بلازیوکلاز، پیروکسن و کاتی‌های کدر; (ب) درشت بلور ازبین با مقداری سنگی در زیمناهای با بافت تراکی (نمونه a(S9)); (ت) بافت غربالی، خورگنگی و ایجاد بافت اسکلتی در درشت بلور پیروکسن (نمونه 14(S9)); (ت) ریزدرشت بلورهای الیوین ایدنیت‌زینتی شده دارای لبه کدر شده همراه با مقداری کمی (کمتر از ۱٪) آبانت (نمونه 12(S1)); (ج) الیوین تجزیه شده به ایدنیت و پیثاه و با شکستگی‌های پرشده توسط ابسته‌های اسفرولوئی (نمونه a(S9)).
نمونه‌ی رویه گدازه‌ی زیر این رویه (نمونه 10) نیز نشان می‌دهد که سایر نمونه‌های برداشت شده در توالی، دارای ویژگی‌های این مورد مانند دیده می‌شوند (شکل 3 تا 6). در این نمونه، تعداد شانه‌کاری به‌طور گسترده در هم‌پوشانی‌های رویه و ناحیه‌های تغییر سریع حجمی در این رویه وجود دارد. این تغییرات قطعاتی با گذر زمان به‌طور گسترده‌ای در رویه‌های آب‌پر شده و ناشی از تغییرات حجمی و نوارهای عرضی تغییرات در رویه، مشاهده می‌شود.

دیده شده در این نمونه‌ها نشان می‌دهد که تغییرات حجمی در رویه به دلیل اینکه تغییرات حجمی در این رویه وجود دارد.

<جدول 26> محاسبه گسستگی در این رویه

<table>
<thead>
<tr>
<th>شیفت</th>
<th>مقدار گسستگی</th>
<th>تغییرات حجمی</th>
</tr>
</thead>
<tbody>
<tr>
<td>شیفت 1</td>
<td>0.12 mm</td>
<td>تغییرات حجمی در این رویه</td>
</tr>
<tr>
<td>شیفت 2</td>
<td>0.15 mm</td>
<td>تغییرات حجمی در رویه</td>
</tr>
</tbody>
</table>

شکل 5 تصاویر میکروسکوپی از بافت‌های نامتعادل رختار آبکاوا (نمونه 10): (الف) آمیختگی مشابه‌های مافیک (قسمت تیره) و فلسفیک (قسمت رانش) به‌صورت ورود زبانه‌های مافیک به درون قسمت فلسفیک (بافت چکی); ب) آمیختگی قطعات گرد شده مافیک (تیر انگرگ) در زمینه فلسفیک (نگ رانش); ج) مافیک در بخش‌های حفره‌های فراوان در میان قسمت فلسفیک; ح) حفره‌ها و تراش‌های فراوان در قسمت فلسفیک.
لذا با توجه به مشخصات بالا، می‌توان این روانه (10.S) S نمونه‌ای برای خروج و ظهور روانه بعدی دانست که ساخت پرش مانند برخی‌تری در مقیاس رخ‌مند دارد. در نتیجه، می‌توان گفت که این روانه گذاره در خلف دیگر روانه‌های پابین‌تر و بالاتر، فاصله فران انفجار است که به دلیل برخورد با آب، در بیابان انفجاری آن تشکیل شده است. از این رو می‌توان آن را یک رخ‌ساز آب‌آوری معرقی کرد.

زمن نمایان

چنان‌که در جدول 1 مشخص است جز نمونه 10 (با مقدار سیلیس 54.95 درصد، جیلویی‌های 45.51 درصد)، بقیه نمونه‌ها در گروه 4 تا 50 درصد از مقدار سیلیس خودرویی و مجموع جیلویی‌ها (51-76) قرار دارند. با توجه به نمونه‌های سیلیس خودرویی، قیمت‌پذیری کل در شکل 3 (S.S نمونه 10 که یک نتایج اندزه‌ای است، بقیه نمونه‌ها از نوع تغییر-پژوهشی هستند که با توجه به مقدار نون و تناوبی (کمتر از 10)، از نوع تغییر هستند و از نوع سری‌های ماهگمانی (36). جزء سری قیمت‌پذیری محصول می‌شوند و با توجه به مقدار بالای نسبت Na2O/K2O (بین 0.27-0.45) گزارش سدیمی دارد.

2- میزان تخلخل سیس (20 تا 40 برای) بالاتر از سایر روانه‌ها برخی از این خرشه‌ها. به طور کامل با کلیه‌های ثانوی (مانند کلسیت، زئولیت و کلسید) بپر در شود. در برخی از موارد نیز دیواره‌های خرشه‌ها با مذاب و بقیه سیستم‌های مکرری خرشه با کلیه‌های ثانوی پر شده است (شکل 3). ورود این گونه خرشه‌ها را خرشه‌های تلفنی نامیده و معمولاً منابعی که پخش از خرشه را اشغال می‌کند نسبت به مذاب P و Ti, K پرخور خرشه از پیوسته‌های مختلف (برای مثال [26-40]) می‌گذارد. تغییر در خرشه‌های تلفنی را ناشی از تغییرات یونیز مذاب بیرون خرشه می‌دانند که باعث می‌شود خرشه از این مذاب در اثر فشار به داخل خرشه نشته کند. برخی (21) و یاد کاهش مذاب از پیوندهای (مانند الیاف‌های عقیق) و برخی (22). یاپارشند که باعث افزایش فشرده‌ی بالاتر یا مذاب دانند. پژوهشگران اخیر اعتقاد دارند که بس از تشکیل جرده‌های اولیه و ادامه تبلور گذاشته در مذاب بین‌خرشه‌ای، دوباره خرشه‌های گاز جدیدی شروع به تشکیل می‌کنند که با فشار اوران به مذاب سیس، جرده‌هایی، که از آن را به روند یک‌طرفی اولیه می‌رایند. 3- برخی از نقطه‌های بسیار بر خرشه (شکل 3) (ب) میزان حفره‌های بالا (ت) و نیز خرشه‌های پراشی (شکل 4) هستند.

شکل 5 نمودار رده‌نده سیلیس-جیلویی کل (15) و تعبیه سری ماهگمانی (36).
تغییرات عناصر اصلی در بین روانها
چنانکه در بخش روابط صحرایی اشاره شد، در بین سری گدازه‌های نوبی، نهایت نمونه‌هایی از یکی از روانها به دلیل دارا بودن بافت پرین قابل ملاحظه برای انجام بررسی‌های سنگ‌نگاری تجزیه چیمیایی غیر ممکن بود. ولی نمودار تغییرات عنصر اصلی بین روانها مورد بررسی، نتایج جالبی را عرضه می‌کند (شکل ۶). نمونه‌های در شکل ۶ برداشت شده‌اند. سبب گردیده و در این ملاحظه‌ها را نشان می‌دهد. به اطلاعات کمیابی فقط SiO۲, CaO, MgO, FeO۲, TiO۲, Na۲O, K۲O افزایش و مقدار Na۲O, K۲O کاهش مشخصی می‌یابد. چنانکه در بخش پیش گفته شد، روان‌های زیرین این روانه (نمونه ۱۰) نیز مشخصه‌های بافتی ویژه‌ای دارند که احتمالاً نتیجه یک فوران انفجاری آب‌آوری است. در اینجا نیز انجام آشکارتر است همراهی تغییر نمودار

شکل ۶ نمودار تغییر مقادیر اکسیدهای عنصر اصلی در بین نمونه‌های برداشت شده (بدوبل مقياس). علامت ۲ مربوط به نمونه آب‌آوری (شکل
۸-۷).
فولاتیل فراکسیون نارمالیزه شده

1- Volatile Fragmentation Depth
2- lobate lavas
ناتی از زیر شدن بکارگیری مادا در اعمت زیر آب در خالی که برشی [29] انفجارهای مادا در زیر آب را به روی مغناطیسی متفاوت آزاد شدن مواد فاز و سیستم‌های مادا در دارنده آنها نسبت می‌دهد که از این جمله می‌توان به سیستم‌های مادا در محل دهانه اندازه‌گیری زمان فاز‌گذاری و اندازه‌گیری در زیر آب تا زیر آب اثر مادا در زیر آب شدن مادا در اعمت کم آب انفجار دارک‌های امکان‌پذیر مادا در انرژی آزاد شدن مواد فاز و در اعمت کم آب انفجار بخار هنگام تسم مادا در دیگر به توجه آب سرد خارجی و دانه‌های شدن مادا پر مرز انتقال.
نسبت نیم‌هأ در نمونه‌ها، چنین مگاماسی شیاهت بیشتری به Ba/Nb در داده [50] (شکل 9 ب). چنین نسبت نیم‌هأ در {Nb/Yb} نسبت به {Th/Yb} نسبت به می‌شود (شکل 9 ب).

از طرفی ترسب نمونه‌ها در نمودار تروژنتیکی در La/Sm مقابل La (شکل 9 ت) نشان می‌دهد که نمونه‌ها از ذوب بخش ۷-۳ درصد یک منبع گاز‌رسی در کلینی به وجود OIB آمدهاند که می‌تواند خاستگاه مناسبی برای مگاماسی باشد. به‌ویژه آنکه نمونه‌های مورد بررسی غنی شدگی شدیدی از نیز نشان می‌دهد HREEs عناصر LREE نسبت به (شکل 7 الف).

اما وضعیت ویرایشی که در منطقه سیارده وجود دارد، همراهی این عدم تعادل فیزیکی در مخزن مگاماسی منطقه با یک نظیر قابل ملاحظه‌ای در ترکیب شیمیایی است. در نتیجه می‌توان چنین فرصت کردن مخزن مگاماسی مافیک بوده که سیلیس منطقه به دلیل رو به ریت با مگاماسی فلسفیکتر با مواد فرانز بیشتری، دچار نوعی عدم تعادل فیزیکی‌شیمیایی و در نتیجه آزاد سازی مواد فرانز مس و وجود گسخختی مگاماسی شده است.

سنگزایی

ویرایش زمین‌شیمیایی سنگ‌های مگاماسی منطقه نشان می‌دهد که مگاماسی منطقه از یک گوشته غنی‌شده به وجود آمده از [43] (شکل 9 الف). بعلاوه این توجه به گم‌بودن

![شکل 9 نمودارهای سنگزایی انف](https://example.com/image.png) تفکیک گوشته تهی‌شده از غنی‌شده [53] (ب) تفکیک سنگ‌کره‌های گربه‌ای از گوشته نسبت زرفای [54] (ب) تفکیک خاستگاه سیلیسی [55] (ت) تشخیص خاستگاه نمونه‌ها به توجه به درصد ذوب‌بخشی می‌تواند (شکل 15) (علائم اختصاصی شکل ب) MORB از OIB. فاصله راه‌های زمین‌شیمیایی، شکل ب) OIB: پالسک‌های غنی‌شده (شکل ب) EMORB: پالسک‌های غنی‌شده (شکل ب) گوشته DMM: پالسک‌های غنی‌شده (شکل ب) PM: گوشته اولیه، Gt: گاز، Sp: اسپیتر، و خطوط آبی خط‌چین می‌برد به درجات ذوب‌بخشی گوشته غرب آنتالو (WAM) گوشته تهی‌شده (DMM) نشان می‌دهد MORB. 4

[DOI: 10.29252/ijcm.26.3.717] [Downloaded from ijcm.ir on 2022-04-27]
زمانی شیمی روانه گذاره‌های هیدروماگامیکی کرتاسه در منطقه...

[52] Fouquet Y., Eissen J.P., Ondréas H., Barriga

