بررسی شیمی کاتی بیوتین در گرانیتونید مکسان، جنوب شرق ایران

محمد رضا قدسي ۱، محمد بومری ۲، ساسان باقری ۲، کازو ناکاشیما ۱

۱-بخش زمین شناسی دانشگاه سیستان و بلوچستان، زاهدان، ایران
۲-پژوهش‌گاه علوم زمین و زیست محیطی دانشگاه سیستان و بلوچستان، زاهدان، ایران

چکیده: گرانیتونید مکسان در حاشیه جنوبی بلوک لوت و در جنوب شرقی ایران قرار گرفته است. ترکیب این گرانیتونید عبارتند از گرانیت، گرانیتونیت، کوارتز منوزونوبورتیت، منوزونوبورتیت دوبورتی و کاریاب. شیمی کاتی بیوتین در سنگ‌های گرانیتی تا گرانیتونیت با کمک رزی بارزنته است. ترکیب شیمیایی بیوتینیت از نوع بیوتینیت می‌باشد که با توجه به مقایر FeO .MnO .MgO .TiO ۲ و نیز مقادیر AlIV جزو انواع ماکمیا اولیه به حساب می‌آید. این بیوتینیت در میختی با گریزندگی نسبتاً بالای اکسیژن تشکیل شده و صفات آن‌ها بلافاصله و نوع ۱ نشان می‌دهد که ویژگی‌های ناتونومیا می‌تواند وابسته به فروارش همکاری دارد. همچنین شیمی کاتی بیوتین نشان می‌دهد که الودگی ماکمیا مازنده این گرانیتونید با بوسته قارایی، کم تا متوسط است.

واژه‌های کلیدی: شیمی کاتی، بیوتینیت، گرانیتونید، مکسان، ایران

مقدمه

بیوتینیت یکی از کاتی‌های مهم فرمولیترین در سنگ‌های آذرین قلمداد شده است و در سنگ‌های آذرین می‌باشد به شکل فنی طیفی نظر می‌شود (1) زیر که این ترکیب شیمیایی بیوتینیت‌ها برای استفاده در تولید فیزیک‌شیمیایی ماکمیا تشکیل هدف‌های گوناگون استفاده می‌شود. بررسی‌های متعدد نشان داده است که شیمیایی بیوتینیت می‌تواند اطلاعات خوبی در باربرد ذوب و قطعه‌برداری می‌تواند منابع گرانیتونیت آذرین نامیده (2). ترکیب بیوتینیت بیشتر با استفاده می‌شود که از منابع ذوب و گچ‌بری به کار بردن اغلب ماکمیا است. این که از بین بردن تعیین و شیمیایی فنی فیزیک‌شیمیائی ماکمیا می‌باشد چهار کانال است (3) بررسی ترکیب شیمیایی کاتی بیوتینیت برای تعیین پتروژن و محیط زیست‌سازی گرانیتونیت‌ها در ایران موضوعی است که به تازگی در دهه اخیر از توجه برخی از پژوهشگران را به

Mohammadreza.Ghodsi@gmail.com

#توجه: متن فارسی در ادامه نوشته شده است.
ازمن‌شناسی انتقادی بزرگ جاموران را مورد بررسی و پتانسیل‌های زمین‌شناسی انتقادی و بی‌نهایت‌های زیست‌شناسی مرتب با کاکی‌سایزی را معرفی نموده‌است. تشکیل اسکارن و کاهش زایی مس‌گرید در جنوب شرقی بزمان بررسی نموده و بیان می‌کند که مشاهده‌های رسوبی گروه‌های پرومیت و میتیت گزارش شده است. تاکنون بررسی‌های جامع بر روی گرانیت‌نکس می‌کنند.

در این پژوهش، نخست نمونه‌برداری دقیقی از گرانیت‌نکس می‌کنند. مورد بررسی قرار می‌گیرد و پس از آتش‌های برای یزی‌های کانی شناخت و سنجش‌سازی، تعداد 10 مقطع که نام‌گذاری‌های سالم و فاقد درگرفتگی بردهند. برای آن‌ها ناحیه‌هایی انتخاب شده و در یک سلسله پردازنده‌های مدل جاگ‌جت 8600 مدل دهنده 15 کیلو ولت و جریان تابی 108 amp به‌کار می‌رود. بخش عمده میانی و محدودیت این‌ها به‌کار گرفته‌اند. اندازه‌گیری تابیت، ترکیب شیمیایی آن از باریک تا اسیدی تغییر می‌کند و کانی بوبیت در این نمونه مشاهده می‌شود.

اسات و نتایج آن‌ها، اثرات منفی نمودار.

جدول 1. نتایج ریز‌پردازش الکترونی کاتی بوبیت در گرانیت‌نکس						
Samples no	1	2	3	4	5	6
Rock type						
Samples	1	2	3	4	5	6
Granit						
Granodiorite						
Monzodiorite						
Diorite						
Gabbr						
SiO2						
TiO2						
Al2O3						
Fe2O3						
MnO						
MgO						
CaO						
Na2O						
K2O						
BaO						
Cr						
F						
O -cl						
H2O						
Total						
T Site						
Al						
Al +						
Fe						
Mn						
Mg						
Ca						
Na						
K						
Ba						
Cl						
F						
OH						
OH-4						

*OH-4=[F+Cl]
مقادیر کاتیون‌بر بر اساس 22 کسیون محاسبه و نیاز فرمول کلی میکا [12] (فرمول ساختاری آن-1/3 Ca₂⁺, 1/3 Mg²⁺, 1/3 K⁺) نشان می‌دهد که فلورون و کلر موجب کسیون‌های درجه دومی اضافی یا عامل فلور از جمع کل موجود در این بررسی مقدار ذبذب از طریق تقسیم وزن مورد انتی فلورون بر کلر محاسبه و سپس از جمع کل ترکیبات کاسته شد تا جمع واقعی بدست آید. مقادیر آب با فرض 4 آم در جای هیدروکسیل بای فرض عنصر سنگی کامل برابر 22 کسیون محاسبه شد. جهت محاسبه OH در فرمول بیوتیت، مجموع فلورون و کلر از چهار کسر گردیده. مقادیر

(12) جوانترین فعالیت مکانیک در کستره مورد بررسی

زمین شناسی گروه‌بندی مکسان

گستره مورد بررسی در 100 کیلومتری شمال غرب ایرانشهر، جاده جنوبی بلوک یک و در جنوب شرق ایران واقع شده است. گروه‌بندی مکسان با پست تقریبی 600 کیلومتر مربع به خصوص از هشتمین شیار می‌باشد و شامل گروه‌بندی اولین و گروه‌بندی دوم (شیار 1) است که در غرب بین طول‌های جغرافیایی 37°-39° و عرض‌های جغرافیایی 60°-66° در شمالی قرار دارد (شکل 1). این گروه‌بندی

(17) شکل 34: قرار دادن اگهی فلورانسانی‌های بزنی، تفتان و یافتن گروه‌بندی گروه‌بندی مکسان

برای نام‌گذاری سنگ‌های نفوذی از رده بندی مدل [16] استفاده شده است. شمارش 300 گونه با کمک دستگاه شمارندگی که توسط فرمان صرفاً مطلوب با این رده

برای هر نمونه صورت گرفته مطمئن است که در نتیجه گروه‌بندی مکسان، فلورون و کلر موجود شده

(شکل 2) کانال‌های شکل دهنده این گروه‌بندی شامل کوارتز، بلژیکیت، فلدسپارهای قلبی، مشترک از نوع ارتموز، هورنبلند، بیوتیت، کلبیتبروکسین، اسنف، آپاتیت، زیرکن، مگنتن و ارتموز و کوارتز و بیوتیت کوارتز و فلورانسانی‌ها شامل درون گروه‌بندی مکسان است (شکل 3) مرز کانال‌های فلورانسانی (هورنبلند و بیوتیت) از حاشیه (گاوانه) به سمت مرکز (گروه‌بندی) کاهش می‌یابد.

کانال بیوتیت بیشتر در مقاطع دیگر-

شکل 34: قرار دادن اگهی فلورانسانی‌های بزنی، تفتان و یافتن گروه‌بندی گروه‌بندی مکسان

(14) سنگ‌سازی و کانال‌های گروه‌بندی مکسان

برای نام‌گذاری سنگ‌های نفوذی از رده بندی مدل [17] استفاده شده است. شمارش 300 گونه با کمک دستگاه شمارندگی که توسط فرمان صرفاً مطلوب با این رده

برای هر نمونه صورت گرفته مطمئن است که در نتیجه گروه‌بندی مکسان، فلورون و کلر موجود شده

(شکل 2) کانال‌های شکل دهنده این گروه‌بندی شامل کوارتز، بلژیکیت، فلدسپارهای قلبی، مشترک از نوع ارتموز، هورنبلند، بیوتیت، کلبیتبروکسین، اسنف، آپاتیت، زیرکن، مگنتن و ارتموز و کوارتز و بیوتیت کوارتز و فلورانسانی‌ها شامل درون گروه‌بندی مکسان است (شکل 3) مرز کانال‌های فلورانسانی (هورنبلند و بیوتیت) از حاشیه (گاوانه) به سمت مرکز (گروه‌بندی) کاهش می‌یابد.

کانال بیوتیت بیشتر در مقاطع دیگر-

شکل 34: قرار دادن اگهی فلورانسانی‌های بزنی، تفتان و یافتن گروه‌بندی گروه‌بندی مکسان

(14) سنگ‌سازی و کانال‌های گروه‌بندی مکسان

برای نام‌گذاری سنگ‌های نفوذی از رده بندی مدل [17] استفاده شده است. شمارش 300 گونه با کمک دستگاه شمارندگی که توسط فرمان صرفاً مطلوب با این رده

برای هر نمونه صورت گرفته مطمئن است که در نتیجه گروه‌بندی مکسان، فلورون و کلر موجود شده

(شکل 2) کانال‌های شکل دهنده این گروه‌بندی شامل کوارتز، بلژیکیت، فلدسپارهای قلبی، مشترک از نوع ارتموز، هورنبلند، بیوتیت، کلبیتبروکسین، اسنف، آپاتیت، زیرکن، مگنتن و ارتموز و کوارتز و بیوتیت کوارتز و فلورانسانی‌ها شامل درون گروه‌بندی مکسان است (شکل 3) مرز کانال‌های فلورانسانی (هورنبلند و بیوتیت) از حاشیه (گاوانه) به سمت مرکز (گروه‌بندی) کاهش می‌یابد.

کانال بیوتیت بیشتر در مقاطع دیگر-
شکل ۱ نقشه‌ی ساده زمین‌شناسی گرانیت‌توده‌ی مکسان، اقتباس از نقشه زمین‌شناسی ۱۰۰۰۰۰۰: ۱ بزمان و مکسان [۱۴،۱۵] با تغییرات توسط نگارنگان.

شکل ۲ موقعیت نمونه‌ها در مثلث نام‌گذاری میدى سنگ‌های نفوذی [۱۷].
شکل 3 تراویز میکروسکوپی انخنافی از رخ‌مونه‌های مختلف سنگی (XPL) تصویر میکروسکوپی از سنگ‌های گرانیتی همراه با بلورهای پیروکسن، پلیپوزکلاز، فلسپسپار و کوارتز (ب) تصویر میکروسکوپی از سنگ‌های گرانیتی همراه با بلورهای هورنلند، بیوتین، کوارتز، پلیپوزکلاز و آرتز (پ) تصویر میکروسکوپی از سنگ‌های گرانیتی مونوزیست همراه با بلورهای کوارتز، بیوتین و پلیپوزکلاز (ت) تصویر میکروسکوپی از سنگ‌های کابروپی همراه با بلورهای پیروکسن، پلیپوزکلاز، هورنلند و بیوتین.

گرانیت
گرانیت‌ها گستردگانی از سنگ‌های گرانیتی مکسان با شمار بسیار می‌آیند. این انواع در سنگ‌های گرانیتی پورفروئید است اما بافت‌های داخلی و گرانیت‌های نزدیک به تونله‌ها دیده می‌شود. گرانیت‌هایی که بافت پورفروئیدی دارند، هاوا دریشت بلورهای ارتزکلر به رنگ صورتی بوده که از آن‌ها به ترتیب ۲۷ گرند متر می‌رسد. کوارتز در حدود ۲۲ تا ۲۹ درصد، ارتزکلات بین ۴۵ درصد، پلیپوزکلاز ۲۲ تا ۲۹ درصد و کانی‌های فرعی بیوتین و هورنلند (کمتر از ۳ درصد). اسفن، زیرکن، آینایت و کانی‌های گرانیتی (کمتر از یک درصد) مانند کانی‌های شمشیر، بیوتین، بیصوتروهای پورفروئیدی شکل و از نقاط دیده می‌شود و می‌تواند رنگی مشخص بیوتین‌ها به صورت صورتی کم‌گرنگ تا کاملاً بی‌رنگی تهیه کانی‌هایی است (شکل ۴).

گرانیتون‌پورفروئید
گرانیتون‌پورفروئید ها بسیار شیوعی دارند که در حالی که در این‌جا به کانی‌های پورفروئید می‌گوییم شکل، اغلب بافت دانه‌ای دارد. پلیپوزکلاز ۴۱ تا ۴۶ درصد، کوارتز در حدود ۲۰ تا ۲۷ درصد، ارتزکلات بین ۱۴ تا ۲۶ درصد، بیوتین تا ۹ درصد،
گابرو سنگ‌های گابرویی به‌صورت یون‌های کوچکی در حاضری جنبه گابرونیت مکسان مشاهده می‌شوند. بافت‌های داخلی و شیت کلینیکی دارند. کلینی های کاوی‌زنانه ۴۱ تا نه درصد، هورستین ۰ تا ۱۸ درصد، کلینی های‌پروپنس ۰ تا ۴ درصد، به‌طور کلی همه این گروه‌های کلینیکی در سنگ‌های کاپرونیت (Fe-Ti) سه میزان کلیه‌های تریه از کلینیکی-جاشه‌های نارنجی رنگ‌ها به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارنجی رنگ‌ها را به‌طور مستقیم از سطح‌های گابرونیت مستقیم تا رنگ‌های رنگ‌های تریه‌های نارن
شناختی بیوتیت‌های اولیه از بیوتیت‌های نانوی به‌منظور شناسایی بیوتیت‌های اولیه از نانوی از نمو‌سازه‌تایی FeO-TiO₂، FeO + MnO نموگذاری می‌تواند بیوتیت‌های اولیه یا ماکمی باشد. از بیوتیت‌های اولیه‌ای که دستحق تعریف مجدد شده‌اند و نیز بیوتیت‌های نانویی نموداری از نمره‌های بیوتیت‌های موردنظر به‌دست می‌آید. TiO₂ و FeO با یکدیگر می‌توانند در گروه‌های مکاسان، نسبتاً غنی از FeO و در قلمرو بیوتیت‌های اولیه یا ماکمی قرار می‌گیرند (شکل 3). بیوتیت‌های سنگ‌های گرابوی و دوبرنی، مقادیر FeO بالاتری نسبت به گرانيتهای دارند (جدول 1). مقادیر FeO میانگینی TiO₂ از حدود 2.5 (گرنگی) تا 4.6 درصد وزنی (گرابوی) متغیر است. بین نمره 20 نرمایی متنوعی به گرانت با تغییر نرمال Ti در بیوتیت‌های پیوسته X_{FeO}=[(FeO*+MnO)/(FeO*+MnO+MgO)] میزان تغییر می‌کند. مقادیر X_{FeO} از بیوتیت‌های موردنظر بررسی
گرانیت‌های مکسان دارای FeO* و MgO، Al₂O₃ در FeO* و MgO، Al₂O₃ در کاتی بیوتیت یک نمونه مشابه ارزش داده‌های این‌گونه نمونه‌های سدگه‌های گرانیتی را در سه گروه دنبال می‌کنند که انتخاب شده‌های آنها از آلومینیوم غیبی به سیاست سپرده‌پذیری بسیاری می‌باشد و با دیگر از آلومینیوسلیکات مثل گرانت، کرکبریت و با آنالوژی هستند و شامل گرانت‌های برخوردی نوع S، و گرانیت‌های کوه‌گردیده‌هایی - قلبیت‌های از نوع 1 که بطور متوسط غیبی از مبنای بوده و معمول‌های آب‌میل کلسیم دار و یا پیروکسپ کلسیم دار و یا جریان هستند. [C1] در شکل 2 تعداد این‌گونه نمونه‌ها مورد بررسی به تصویر درآمده‌اند. تمام نمونه‌های بیوتیت گرانیت‌های مکسان از نوع گرانیت‌هایی است. لیو I هستند و در پنهنه C ایننگی می‌گیرند که به قلمرو بیوتیت در گرانیت‌های مکسان - قلبیت‌های قلبیت‌های قلبیت‌های هستند و با شکل 3.1 این نمونه‌ها برای کسی از نمونه‌های فاتح‌ترین از نمونه‌هایی که به قلمرو بیوتیت در گرانیت‌های مکسان - قلبیت‌هایی هستند و با شکل 3.1 این نمونه‌ها برای کسی از نمونه‌های فاتح‌ترین از نمونه‌هایی که به قلمرو B ایننگی می‌گیرند که به قلمرو بیوتیت در گرانیت‌های مکسان - قلبیت‌هایی هستند و با شکل 3.1 این نمونه‌ها برای کسی از نمونه‌های فاتح‌ترین از نمونه‌هایی که به قلمرو B ایننگی می‌گیرند که به C ایننگی می‌گیرند که به C
تغییر میزان آلکوپیوسته‌ای گراتین‌ها به کمک شیمی‌کاتی بیوتیت

یکی از راه‌های تغییر آلودگی استفاده‌ای از چهارضلعی Al total و Fe/Fe + Mg به ترتیب شاخص گریزگشته گریزگی آن و پرآمیختی بودن ماما در زمان تیز پیوسته است. [6] چندادی این رابطه بیشتر نشان دادم تغییر میزان آلکوپیوسته‌ای گراتین‌ها به کمک شیمی‌کاتی بیوتیت در در نمودار Al total-Mg، بررسی در گستردم مناسب با آهکی قرار می‌گیرد.

(شکل ۸) که با نتایج روش [1] کاملاً همخوانی دارد.

از طرف دیگر تغییر شیمی بیوتیت قاره به جدای سنج گراتین‌های نمونه (جا) به گونه‌ای که [۲۷] به حساب تغییرات نسبت Fe/Mg + Fe (که نسبت به بیوتیت نموداری را ارائه کردن که جدا کننده انواع گراتین‌ها را با خصوصیات آن که در این نمودار تماس نمونه‌ی بیوتیت بررسی در گستردم گراتین‌های به کمک شیمی‌کاتی بیوتیت در کاملاً همخوانی دارد (شکل ۹).

تغییر میزان آلکوپیوسته‌ای گراتین‌ها به کمک شیمی‌کاتی بیوتیت

بررسی‌های سنجشانس، و داده‌های زئوستیمی عناصر اصلی،
فرعی و ایزوپیروی در مجموعه گراتین‌زدیبان نشان داد که این مجموعه یک کمیتکس نفوذی آهکی - قلبیان
از نوع I است و دارای این گراتین‌زدیبان حاشیه عاله قاره
ای است، به عبارت دیگر پیوسته آن را به فرمانش پیوسته‌ای
ای بیست و دیگر گراتین‌زدیبان این نوع پیوسته‌ای به نسبت مطلوب در نموداری که
در روی دیگر از عناصر ۱۱ و ۰۱ تغییر میزان آلکوپیوسته
ای در گراتین‌ها استفاده‌ای می‌تواند. در ساختار بیوتیت،
Cl، F و Mg تغییر گرایشی در محلول، در مولتیت OH
این ها با کلر جایگزین در مورد اول به کلر جایگزین OH
که با آب می‌شود. [۲۳] یک طرح ریدنبندی که واحدهای مختلف
گراتین‌زدیبان کلر که در نهایت به و توسط گراتین‌زدیبان کلر
ربای و شیمی آمپیلی، آن را کاملاً کردهاند. یک طرح این رده
بندی سنجش‌های حاوی بیوتیت به توجه به I-1
افزایش نسبت I/F/OH به گراتین‌های نوع I با آلودگی اندک - I-
پیشتری داشته و گراش به داشتن منگنز کمتر و مقدار فلوئور بالاتری در ساختار پیوسته‌های خود دارند. برخی کلر در آنها واکنش نشان می‌دهند که همه این موارد بر آلودگی کم تا متوسط مگامای سارنره آنها با پوسته قاره‌ای دلالت دارد. این بافت‌ها در مقایسه با نتایج حاصل از داده‌های ایزوتوپی برای $^{87}\text{Sr}/^{86}\text{Sr}$ که بر اساس آنها مقدار نسبت اولیه $^{87}\text{Sr}/^{86}\text{Sr}$ تعدادی از سنگ‌های مجمعه گرانیت‌های بزمان پایین و چوبی در حدود ۷۰۰ میلیون سال و آلودگی اندک با پوسته قاره‌ای را نشان می‌دهد، همخوانی دارند.

گرانیت‌های نوع I دارای آلودگی متوسط (I-MC) گرانیت‌های نوع I (Contaminated I-type granites متوسط آلودگی و گرانیت‌های نوع I احیاپی به شدت آلوده (I-SC) I-type granites Strongly Contaminated and) I-SCR یا قرار می‌گیرند. این سنگ‌ها آلومینیوم کمتر و منیزیم MC

شکل ۸ تعبیه سری مگامایی گرانیت‌های مورد بررسی براساس ترکیب شیمیایی پیوسته [۱۲].

شکل ۹ نمودار تغییرات نسبت Fe/(Mg+Fe) مقابل Al^{IV} موقعیت ترکیب پیوسته‌های گرانیتوئد مکسان را نشان می‌دهد. گستره‌های گرانیتوئد نوع A و B شوسته‌نی است. [۲۷] ارائه شده است.

