TY - JOUR JF - ijcmir JO - www.ijcm.ir VL - 25 IS - 4 PY - 2018 Y1 - 2018/1/01 TI - Whole rock geochemistry and Sr-Nd isotopes of mafic to intermediate subvolcanics bodies of Kashmar, evidence for subduction of Sabzevar back arc basin beneath Lut block TT - شیمی سنگ و ایزوتوپ‌های Sr-Nd توده‌های نیمه‌عمیق مافیک- حدواسط کاشمر، شاهدی بر فرورانش حوضه پشت کمان سبزوار به زیر بلوک لوت N2 - On the basis of field studies, mafic-intermediate bodies of Kashmar are subdivided into the old series (often stocks of gabbro, diorite, quartz diorite/monzodiorite) and the new series (quartz monzodiorite swarm dykes). In terms of crosscutting relationships, old series has the age between oldest volcanic units (57 Ma) and Eocene granitoids (40 Ma), but the swarm dykes are attributed to the post Eocene (Oligocene?) in age. Mafic-intermediate bodies with the high-K calc-alkaline to shoshonitic, metaluminous to low peraluminous, LILE/HFSE and LREE enrichment [(La/Yb)N=5.3-6.8] and depletion of HREE characteristics are reminiscent of the arcs in subduction zone. These features accompany with negative anomalies of Eu indicating magma generating at the depth of plagioclase stability and contaminiation of magma to continental crust, which remains during the melting of the garnet rock. Linear trend of the major oxides and trace elements in Harker diagrams indicate in importance of fractional crystallization of magma evolution. Average of initial isotope ratios of 87Sr /86Sr and 143Nd /144Nd (in age 50 Ma) for the old series samples are between 0.7054 /0.7062 and 51262-0.51264 respectively, and the εNdi has a range of 1.08 to 1.42. Average of initial isotope ratios of 87Sr /86Sr and 143Nd /144Nd (in age 30 Ma) for swarm dykes are 0.7056 and 512623 respectively, and the εNdi amount is .059. εNdi positive values and low ISr of all rocks with their TDM (0.6-0.8) implying that they form from partial melting of lithospheric mantle source, which modified to earlier subduction processes melts. Based on the Th/Ta versus Nb/Ta and Nb/Y versus Zr/Y charts, both subduction and rift forming processes were involved in the formation of Kashmar rocks. This feature is compatible with subduction of Sabzevar oceanic crust to the Lut block. SP - 711 EP - 726 AU - Almasi, Alireza AU - Arjmandzadeh, Reza AU - fransisko santoz, jozeh AU - karimpour, mohammad hasan AD - Lorestan University KW - Subvolcanic bodies KW - geochemistry KW - Sr-Nd isotopes KW - back arc KW - Kashmar UR - http://ijcm.ir/article-1-990-en.html DO - 10.29252/ijcm.25.4.711 ER -