Determining the physical crystallization condition of Lakhshak granodiorite pluton and its dykes

M. Rezaei-Kahkhaei*, Z. Alimousa, H. Ghasemi

Department of Petrology and Economic Geology, Faculty of Earth Sciences, Shahrood University of Technology, Shahrood, Iran

(Received:5/6/2016, in revised form: 28/9/2016)

Abstract: The Lakhshak pluton, a part of Zahedan-Saravan granitoid belt, is located about 15 km NW of the Zahedan city. The plutonic rocks are granodiorite in composition and are cut by a numerous of microdiorite and dacite dykes. The rocks of Lakhshak pluton consist of plagioclase (oligoclase-andesine), K-feldspar, quartz, biotite, amphibole (pargasite - edenite), sphene, apatite and opaque minerals. In this research, the composition of these minerals have been considered as the geo-thermometer and geo-barometer, hence they have good potential for calculating crystallization and emplacement conditions of a magma and tectonic setting. The presence of calcic amphiboles and primary biotite are evidence of Lakhshak pluton igneous origin (I). The amount of Al$_{tot}$ in the pluton amphiboles are 1.02 to 1.32 representing the pluton emplacement at the depth of 3.8 to 8.4Km; while the core of those amphiboles analyzed from dikes contain Al$_{tot}$ = 1.9-2.3 showing the depth of magma chamber in middle-lower crust (16.9-23 Km) as these dykes are thin and cooled fast after emplacement. The thermometry done on Lakhshak pluton and its dykes indicated cessation of exchange and equilibrium of minerals temperatures 645-732ºC for pluton, 730-824ºC for dacite dikes and for andesitic dikes are 808-945ºC. Moreover, biotites were plot in calc-alkaline field of Abdul Rahmans diagram, which represents the Lakhshak pluton might be formed in an active continental margin during the subduction of Sistan oceanic lithosphere beneath Afghan Block.

Keywords: thermobarometry; mineral chemistry; granodiorite; Lakhshak; Zahedan.

*Corresponding author, Tel-fax: 023- 323966007, Email: Rezaei@shahroodut.ac.ir