بررسی خاک دیرینه کالکتری در سازند شوریه؛ نمونه‌ای از برخ قفره در شرق
حوضه رسوی کیه داغ

مهناز کسیمی، محمدحسین محمودی قرابی، سیدزاده موسوی حرمی، اسدالله محبوبی

گرد کرده شناسی، نتایج فرودپذیر شده

چکیده: سازند شوریه (وزرسک پسرین- کریست پیشین)، در شرق حوضه رسوی کیه داغ، از رخساره‌های نوین تا اولین طبقات شکل‌دهنده برخ شرقی و رزیکترات و هستند به طوری که وجود رنگ افشانی که به پیگیری مغز تا ناپاتک عفاین‌های رژیمان دارند در تاریخ کالکتری‌ها این بخش است. خاکهای دیرینه این بخش در معرض فرآیندهای هلاکتی، موادکات، سیمایی شدن و پیری‌شدن قرار گرفته‌اند. فعالیت دی اکسید کریست کالکتری‌ها در دیرینه این بخش در اثر روند تکامل شیمیایی دارد. افزون بر عفاین‌های زنبوری، نمونه‌های سطح ایستیقی در بهنه مخلوط نقش مهمی در تشکیل خاکهای دیرینه کالکتری سازند شوریه در برخ قفره داشته‌اند.

واژه‌های کلیدی: خاک دیرینه، کلیسی‌سول، نوسان‌های سطح ایستیقی، سازند شوریه، حوضه رسوی کیه داغ

مقدمه

خاکهای دیرینه در دهه‌های اخیر مورد توجه بسیاری گرفته‌اند. این نوع خاکهای طبیعی در نواحی مختلف سیلیسی از سوءرطینه و کریستی برسی شده‌اند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین روند ایجاد می‌شوند. خاکهای این نوع از افراد، خاکهایی از مهارکننده نمونه‌ای کالکتری‌ها که معمولاً در نواحی جنوب غربی و شمال شرقی زمین РЯ}
بردیاری از گل‌کره‌های سازند شویریچه به صورت سطحی انجام شد و 12 نمونه پس از نهایی مقایع نازک بررسی سنجشگاری شدند. مقایع نازک با محلول آلی‌ننریت فوسفات کوز با شویریچه ساختمان‌های رگ تیز گردیدند. همچنین نمونه‌ها با میکروسکوپ مدل Technosyncold 8200 MK3 (CL) کاتالیزاتوری در گسترش شدت‌جریان 195 میلی آمپر در آزمایشگاه روسیه شناسی دانشگاه فردوسی مشهد بررسی شده و با دو میکروسکوپ الکترونی رویش سانترتم مربعی با میکروسکوپ الکترونی رویش ۳۵kV با دقت ۲۰۵ nm و با برسی و تلاز ۳۵۰OVP از آزمایشگاه مرکزی دانشگاه فردوسی مشهد بررسی گردیدند.

برای این منظور، نمونه‌ها به روش گلوکاس پوشت دهی شدند. ترکیب عمده این کربنات به روش گلوکاس پوشت دهی SC7620 (Au-Pd) مدل 20 (میکروسکوپ) و در جالب کابین‌های نکته‌ری نوری بلاسمای جفت شده تالیف در آزمایشگاه زرآما در تهران انجام شد. تعداد ۷ نمونه برای تجزیه ایزوتوپ پانزده کربن به آزمایشگاه ایزوتوپ دانشگاه تونربریک امیان را در ترتیب نسبت به استاندارد محاسبه و گزارش شدند. همچنین ترکیب کاتیون VPDB شناسی نمونه‌ها به روش براش پروتو ایکس (XRD) در آزمایشگاه مرکزی دانشگاه فردوسی مشهد انجام شد. نتیجه گزار شد که برای استفاده از این نمونه به عنوان نمونه مدلی قابل توجه قرار می‌گیرد.

روش بررسی

خاک‌های درییه بهترین دوره از نظر مکروتغییر گردیده‌ها می‌باشد و از نظر مکروتغییر به آزمایشگاه با مقایع مختلف نازک شناسایی شدند. در این پژوهش به منظور بررسی صحرایی خاک‌های درییه از رودبندی مک و هماکار، استفاده شد که به توجه به سادگی بیشترین کاربرد را در این زمینه دارند. خاک‌های درییه در بررسی های صحرایی براساس عوال‌عنوانی، جنگل و نوع سد میزان درآمدهای کالکریت، اندازه و گسترش جانی آن، مربوطی و ارتباط با سد نسبت به زمین‌آبی و جو و آب‌ریز اشکالی، زمستان، ضخامت و همچنین اندازه گره‌های کالکریتی شناسایی شدند. نمونه:

۱) نقشه زمین‌شناسی بررسی که موقعیتی بررسی مورد بررسی به نشانه سازاره مشاهده است.
شکل ۲: سنگ‌چینه‌شناسی سازند شوریجه در برخی قرفا به دست آمده
بحث و بررسی

خاک‌های دریانه سانزند شوریجه (برش قرفقه) در بررسی‌های صحرایی و آزمایشگاهی بر پایه رده‌بندی شکاگاهی، توصیف کالکترها، و تقلید‌های طبیعی که در توصیف صحرایی این گونه از خاک‌های دریانه، ریختار، اندوزه و رنگ آنها بررسی شده، در سرت ماسه سنگی یک سوم بالای سانزند شوریجه در برش قرفقه (شکل 3) کالکترها به شکل‌های پرتوی و گره‌کی (صوم توده‌ای میان‌دره) تا ضیمه رخ می‌دهند. کالکترها مورده بررسی در نهشت‌های ماسه سنگی توده‌ای (خوشه سنگی Sm) وجود دارد. برپارامکالکترها یا پرتویی کالکترها، قطعه‌های نیز دیده می‌شوند. شوند که هنگام برداشت، پودر می‌شوند (شکل 4). این لکه‌ها یا گره‌های رنگ‌منش نتیجه از کرم قرفقه نزد (594، ب) این لکه. از خاک‌تری رونش تا مالی به اپی روش (7) (نادر)، این لکه‌ها از نظر اندازه نیز تنوو سببیاری از حدود 1.5 تا 3.80 میلی‌متر و 5 میلی‌متر تا 55 میلی‌متر است. قطع کالکترها یا گره‌های کالکترها به تغییراتی شبیه ریز و کالکترها بکری جنسیتی دارند و به سختی با چکش شکسته می‌شوند. البته جدا شدن این قطعه‌ها از سبتر ماسه سنگی به سبب راه‌حلی است و

کالکترها

در اینجا که به ترتیب کاوان شناسی و ساختار کالکترها بر اساس طبیعی خاک‌های طبیعی کالکترها ترکیبی کاوان شناسی ای اند. گنن دیده خاک در دیده کلیست و با درصد کیتیرا کالکتر است (شکل 4). توصیف میکروسکوپی کالکترها به شکل قرفقه (صوم توده‌ای میان‌دره) و نراده دانه‌های کالکتر (Q) و نراده دانه‌های کالکتر (Q) و بلورهای کلیست (Ca) با به‌هاده نیز و زاویه‌دار در بین بلورهای کوالتر است. بلورهای کلیست در تصور میکروسکوپی انتقالی تصوری انجام شده و خوراکی در نشان می‌دهند (شکل 4). بررسی‌های اولیه مقطع نازک با میکروسکوپی فیلم بری انجام شد و برای تعیین درصد مقطع در کالکترها کارتیه‌ای در نگاه مقایسه مرجع [1] استفاده گردید. در تصور میکروسکوپی، بلورهای رنگ کوالتر جوزشی که ضعیف را نشان داده (شکل 5A). مقدار بلورهای رنگ کوالتر در مقطع مختلف حدود 14 تا 24 درصد می‌باشد، به طوری که کوالترها یا پی کریستال درد کمی را نشان می‌دهند (شکل 5B).

شکل 2: رده‌بندی خاک‌های دریانه به پایه فرایندی شکاگاهی (۳).
محلول آلیزارین قرمز و به روش مرجع (8) انجام شد که به این ترتیب، بخش‌های عضد کلسیتی کاملاً رنگ گرفتند. بخش‌های رنگ تغییر جریان نشان دهنده مقادیر کمی دولومیت در بین بلورهای کلسیت هستند (شکل 5 ت).

(کمتر از 5 درصد) دیده شد. در این بررسی، کلسیت موسکوتی با مقادیر 1 تا 2 درصد سانسایی شد (شکل 5 ب). در برخی از مقاطع نیز فلزسپار قلبی با مقادیر کمتر از 2 درصد مشاهده گردید. تفکیک کلسیت از دولومیت به وسیله رنگ‌آمیزی با کلسیت (Ca) در فضاهای بین دانه‌های کوارتز (Q) بر جای گذاشته شده و سپس دچار انحلال شده است.

شکل ۴ تصاویر صحرایی کالکروپهای برش قرقره: (الف) ماسه سنگ‌های بک سوم بالایی برش قرقره شامل کالکریت (بیکلا فرمز رنگ) دیوار چین به طول حدود ۱ متر به عنوان مقیاس است (ب) کالکریت بودری (پ) کالکریت بروزروی، (پ) کالکریت گره‌کنی، (ت) کالکریت گره‌کنی با سمگردی مشخصات (ت) آثار آشکاری زیستی. ج) نمودار XRD یک نمونه کالکریت و (ج) تصویر میکروسکوپ الکترونی از نمونه کالکریت برش قرقره که نشان می‌دهد کلسیت (Ca) در فضاهای بین دانه‌های کوارتز (Q) بر جای گذاشته شده و سپس دچار انحلال شده است.
تصکیل گرنیت‌های با درخششگی بالا، شرایط احیایی در منطقه آب آزاد رخ داده است (شکل 5) و عنصری چون مانگر و اهن در این شرایط به درون ساختار بلورهای کلیت وارد شده‌اند. ضریب توزیع گرانیت باعث هم‌انداز یافتن و مشتق‌سازی است، جذب این عنصر را توسط کلسیت کنترل می‌کند. از آنجا که این ضریب در رابطه با ورود برخی عنصر چون سدیم و استرانسیوم به شکل بلوری گرنیت کمتر از یک، ولی برای آهن و مانگر بیش از یک است [12]، بخش‌های بدون درخششگی در شرایط اکسیدلی در منطقه هوا به شکل شدت‌های بالا درختشده. این در حالی است که بخش‌های با درخششگی بالا به اعتمال سیلیسیت بالا امداد سطح ایستایی و در شرایط کم اکسیژن شکل گرفته‌اند. بنابراین با استفاده از تصویر کاندئنتاناکی می‌توان به نتایج معمولی دست یافت، به طوری که تغییر در حالت بدون درختشگی و با درختشگی بسیار ضعیف به حالت درخششگی بسیار شدید (نوراهای نپترنی و نارنجی و قرمز) نشانه‌ای از شرایط متفاوت اکسیدلی-کاهش در زمان تشکیل این سیمان هاست. شکل 6 پ نشان دهنده‌ای که در کلکریت‌های با درختشگی، را نشان می‌دهد. این بلورهای نزد ترموبدنی‌ها در دمای یا این بلورهای نزد ترموبدنی‌ها در دمای پایین و با درد مدت طولانی ت و درجه اشباع‌سنجی یا فیت‌تر تشکیل می‌شوند [13]، این بلورهای براساس ویژگی‌های بالینی و اندازه بلوری، به اعتمال سیلیسیت در کانه‌های کلندری در بروز درخششگی (CL) با منطقه‌بندی به خوبی مشخص می‌شوند که نشان دهنده تغییر شرایط شیمیایی رشد بلور است. تغییر در شدت پرتوهای نابینای سطح کانه نشان دهنده تغییر در فرآیند Fe3⁺ و Mn3⁺ در بلور است که به ترتیب به عنوان عنصر فعل کننده و بازدارنده شاخه‌نشان شدند [11] عنصر فعل کننده سپس تحریک و باز تابش نور پس از بیماران الکترونی و عنصر بازدارنده معنی‌دار از نظر می‌شوند [11]. بنابراین، درخششگی کریستال‌های با فرآیند نسبی Fe3⁺ (مهمترین عامل بازدارنده) و Fe2⁺ (مهمترین عامل فعل کننده) در شکل بلوری کنتل (Mn3⁺) می‌باشد.

بررسی‌های کاندئنتاناکی (CL) بر مقاطع نازک کالکریت‌های (CL) منطقه‌بندی مجبری را نشان می‌دهد (شکل 6 اف). در این طریق، نوراهای با درخششگی بالا شرایط احیایی را نشان می‌دهد. با آماده‌سازی سطح این بلورهای نزد ترموبدنی‌ها در دمای پایین و با درد مدت طولانی ت و درجه اشباع‌سنجی‌های بالینی و اندازه بلوری، به اعتمال سیلیسیت در کانه‌های کلندری در بروز درخششگی (CL) با منطقه‌بندی به خوبی مشخص می‌شوند که نشان دهنده تغییر شرایط شیمیایی رشد بلور است. تغییر در شدت پرتوهای نابینای سطح کانه نشان دهنده تغییر در فرآیند Fe3⁺ و Mn3⁺ در بلور است که به ترتیب به عنوان عنصر فعل کننده و بازدارنده شاخه‌نشان شدند [11] عنصر فعل کننده سپس تحریک و باز تابش نور پس از بیماران الکترونی و عنصر بازدارنده معنی‌دار از نظر می‌شوند [11]. بنابراین، درخششگی کریستال‌های با فرآیند نسبی Fe3⁺ (مهمترین عامل بازدارنده) و Fe2⁺ (مهمترین عامل فعل کننده) در شکل بلوری کنتل (Mn3⁺) می‌باشد.
فضاهایی خالی است [17] و وجود این سیمان نشان دهنده نسبت پایین منظور به کلسیم (Mg:Ca) در سیالهای تشکیل دهنده سیسیم در کالکرتیه‌های مورد بررسی درشت بوده و مشخص بوده و فضاهای خالی را بر کرده‌است (شکل 7b). قطر کلسیم‌های پیچ‌های 3 تا 5 میلی متر است.

ب- فشرده‌گی: این فرآیند اغلب همزمان با رسوبگذاری شروع شد و در این بدانه می‌باشد. فشرده‌گی کیفیکی باعث می‌شود که دانه‌های متراکم شده، نفوذپذیر و تخلخل کاهش یابد و گاهی باعث شکستگی دانه‌ها می‌شود. فشرده‌گی کیفیکی در اعماق کم رخ می‌دهد. [16] کالکرتیه‌های ساند شوری‌ها در معرض فرآیند فشرده‌گی کیفیکی قرار می‌گیرند (شکل 7b).

پ- دولومیتی‌های جانشینی کرتین کلسیم توسط دولومیت می‌پوشاند و درست در سطح رسوی‌ها، یا همزمان با رسوبگذاری و یا پس از انجام شود [18] در نمونه‌های کالکرتیه‌های مورد بررسی بالغ بر 60درصد ریز و برکنده نیز دیده می‌شود. به‌طور اجمالی در منطقه آب آزاد شکل شده‌اند. با توجه به تفاوت میکروسکوپی (شکل 7c)، می‌توانیم به شکلی دلخواه، بیشتر از آن‌ها را در نظر بگیریم (شکل 7d). دولومیت‌های نوین کالکرتیه‌پس از رنگ آمیزی توسط الیزابت اولم رنگ نگرفته‌اند (شکل 5c). مرحله تدفین کم عمق، به صورت جانشینی و یا با اثر توریخینی افزایش دولومیت‌های ریزتر تشکیل شده‌اند [14].

شواهد درون‌وری
کالکرتی‌های ساند شوری‌های (کرتین‌های قاره‌ای) در معرض فرآیندهای دیازنتی مختلف شیمیایی، تشکیل دهنده، دولومیتی‌های پیچ‌های صورت گرفته‌اند که در ادامه توضیح داده می‌شود.

الف- سیمان‌های شبد: این فرآیند از اصلی‌ترین فرآیندهای درون‌وری در سطح‌های رسوبی است که سبب پایداری رسوب‌ها می‌شود. این فرآیند در محیط‌های مختلف متفاوت است و به صورت گوناگونی بیشتر می‌شود. سیمان‌های شبد با معمولاً یک سیال استخوان در فضاهای خالی انجام می‌شود. [15] در کالکرتی‌های ساند شوری‌های (کالکرتی‌های کلسیمی دانه‌ای و فضاهای دیده شده، سیمان‌های شبد شامل بلوهرهای کلسیمی کوچک و ترقباً همان‌دامث این کت‌هایی در فضای خالی بین دانه‌ها تشکیل می‌شود. سیمان‌هایی در این مکان‌ها همان‌دامث و کلاژن‌ها با اثر این فرآیندهای درون‌وری تشکیل شده‌اند [16] در مقاطع میکروسکوپی کالکرتی‌های مورد بررسی، اندازه بلوهره‌های کلسیمی دانه‌ای بین حدود ۱۰ تا ۲۰ میلی‌متر انداره گری و برآورده شده‌اند (شکل 7f).

سپان بالویک از سیمان‌های درون‌وری‌های نهایی و پر کننده

شکل 6: تصاویر میکروسکوپی کاندوتابانکی از نمونه‌های کالکرتیه‌های در برش قرفه اف (فلپ) تغییرگرگ در CL که ناشی از تغییرات عناصر آلی و سنگین و تغییر در نسبت آهن و منگنز و نشان‌دهنده شرایط مختلف پیوستگی آکاسیشن-کاهش (Eh) در نوسان‌های سطح ایالتی است. ب- سیمان‌های قبل از کالکرتی‌های پس از (bl) کالکرتی‌های مورد بررسی در نور قطع‌های صفحه ای و پر کننده
شکل 7: تصاویر میکروسکوپی از فرآیندهای دیزالتی در نمونه‌های کالکرتی‌های سازند شوریجه (پوش شرایط). همین تصاویر در نور فلزی منتقله (XPL) قابل مشاهده است.

تنت- پیریتی شدن: پیریت یک فرآورد دوره‌ای ناشی از واکنش شیمیایی سولفور و آهن دوره‌ای است که در شرایط احیایی و غلیظ در مراحل اویلی درون‌زایی باعث می‌گردد که عمق و شرایط زیر سطح ایستایی (منطقه آب ازاد) شکل می‌گیرد. [۲۱] پیریت دانه‌مشکی از ابتا بافت بلورهای ریز و کروی پیریت در اندازه میکرون و انواع شکل‌دار، از اغلب تصویر تکی و در اندازه‌های نزدیک به میکرون به وجود می‌آیند [۲۲]. فرآیند پیریتی‌شدن به صورت کلی در کنار کالکرتی‌های سازند شوریجه دیده شده است (شکل ۷).
وسیع‌ترین کلاریت‌ها

برای بهتر کردن انجام شد. غلظت عناصر فریفس نمونه‌های کلاریت‌های در جدول 2 اثر اندازه‌گری. در نمونه‌های کلاریتی، مقدار ممکن می‌گردد و بیشتر می‌شود. در تشکیل نمونه‌های متریک کمتر از طول

جدول 1 و 2: نمونه‌های کلاریت مورد بررسی.

<table>
<thead>
<tr>
<th>نوع رزیفیت</th>
<th>یون پایه رده‌های مورد بررسی [19]</th>
</tr>
</thead>
</table>
| بلورهای کلسیم‌پروپون دانه‌های کورتاز | إن بایکه به صورت بلورهای کلسیم‌پروپون دانه‌های کورتاز دیده می‌شود (شکل 6-ب). عرض این بلورهای کلسیم‌پروپون کمتر از طول این آن. البته تشکیل این بلورهای کلسیم‌پروپون تجربه فعالیت گروه بالایی (شکل 6-ب) [24].
| حفرای موجودات | ان بایکه سالگی ویژه‌ترین ترکیب که در طول این آن به دو کاهش است (شکل 6-ب). ریز بایکه بنا | ریز بایکه بنا |
| زمینه میکروکچی | در بیش‌تر نمونه‌های کلاریت مورد بررسی و 2:7 که زمینه میکروکچی در نمونه‌های کلاریتی اثر عاملی همیشه در میان قابل توجه است. (شکل 6-ب) [23].
| اتوم سیمیان‌های دانه‌های و بلوکی | در بررسی های میکروسکوپی انجام شده، ان بایکه نرم اتوم سیمیان‌های دانه‌های و بلوکی (GS6) بایکه آلفا شامل سیمیان‌های دانه‌های (شکل 7-ب) و بلوکی (شکل 7-ب) هستند. ان بایکه سیمیان‌های نرم اتوم سیمیان‌های زیستمیت و انر واکنش‌های چند فرکانسی (الگوی از این باشندگان و واکنش‌های بین‌مناطقه نرمی می‌باشد) ریز بایکه بنا [23].
جدول 2: داده‌های تجزیه عنصری و ایزوتوپی نمونه‌های کلسی سولی بر پرقره

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>Ca(%)</th>
<th>Fe(ppm)</th>
<th>Mg(%)</th>
<th>Mn(ppm)</th>
<th>Na(ppm)</th>
<th>Sr(ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.41CAL</td>
<td>35.81</td>
<td>142.82</td>
<td>0.17</td>
<td>19.94</td>
<td>125515</td>
<td>251676</td>
</tr>
<tr>
<td>2.41CAL1</td>
<td>38.50</td>
<td>244.84</td>
<td>0.08</td>
<td>112.4</td>
<td>237121</td>
<td>5460</td>
</tr>
<tr>
<td>2.91CAL</td>
<td>34.90</td>
<td>111.12</td>
<td>0.27</td>
<td>88.93</td>
<td>4770.82</td>
<td>57587</td>
</tr>
<tr>
<td>2.92CAL</td>
<td>24.24</td>
<td>554.83</td>
<td>0.37</td>
<td>241.87</td>
<td>3.024</td>
<td>85852.5</td>
</tr>
<tr>
<td>2.10CAL</td>
<td>29.11</td>
<td>828.34</td>
<td>0.31</td>
<td>781.42</td>
<td>72925</td>
<td>53620</td>
</tr>
<tr>
<td>2.10CAL1</td>
<td>27.84</td>
<td>318.89</td>
<td>0.28</td>
<td>318.89</td>
<td>241.328</td>
<td>1114.75</td>
</tr>
<tr>
<td>2.13CAL</td>
<td>35.19</td>
<td>109.17</td>
<td>0.50</td>
<td>959.44</td>
<td>4883.7</td>
<td>958.85</td>
</tr>
</tbody>
</table>

شامل C3

کلسی سولی، افزون بر بوشک گیاهی سطحی نوع C3 شامل درختان، بوته‌ها و چندنارها که اغلب در شرایط آب و هوایی خشک تا نیمه خشک فراوان است، می‌تواند به وجود فعالیت‌های میکروبی نیز نسبت داده شود (شکل 8). فشار در آکسیدگیر کربن؟

در اکسید کربن گاز کلخانه‌ای مهمی است که تنها مقدار ۱٪ در جو در دورهایی که شرایط برای تشکیل گازهای گلخانه‌ای فراهم بوده است اهمیت بسیار دارد [۲۸]. روش‌های گوناگونی برای تعیین مقدار در اکسید کربن در جو در دوره‌های زمین‌شناسی وجود دارد که از روش‌های متفاوت می‌توان به تعیین آن بر پایه مقدار کربن موجود در خاک دیده‌اش اشاره نمود. فشار در اکسید کربن در بافت ی زمین‌شیمی بر اساس مقدار ایزوتوپ کربن خاک‌های دیده‌اند کربناتی سنجیده شده است [۲۷،۲۸]. درک بیشتر اقلیم و شرایط آب و هوای کربن را پیش‌گیری و آکسیدزیم و پیش بینی شرایط آب و هوای دیده‌اند نیازمند بررسی و به‌آورد فشار در اکسید کربن است.

برای اندازه‌گیری فشار Cحي، از فشار HCO3 به روش سرلینگ [۲۹] و محاسبه شده توسط اک آرت و همکاران [۲۹] استفاده شد.
آمده نوتوس مرطبی و همکاران [32] در بررسی کارگش و استفاده از سندن شوریچه را تایید می‌نماید. ریتالاک [32] فشار دی اکسید کربن در دوره کرنش بیشین را 1000 تا 310 ppmv افزایش گردید که این نتایی مهندس در دوره کرنش فشار گاز ذی اکسید کربن به طور بیشتری باشد نیوبله است [32].

مقدار بارندگی دیرینه

مقدار پارن‌رنگ دیرینه را می‌توان با تحلیل داده‌ها و بررسی گره‌های کلرکیشنی تعبین کرد. در این پژوهش، مقدار بارندگی دیرینه با استفاده از عمق گره‌های کنترلی و بکار بردن روابط جامع مراجع [32] به دست آمده استفاده از این روش تنها برای کلرکیشن گره‌های مجزا است، زیرا به راحتی و به طور کامل از بستر ماسک‌نگی جدا می‌شوند، و به سادگی می‌توان عمل ترکیب آن‌ها را از داده‌گیری کرد. عمق گره‌های کلرکیشنی با خطاهای اندازه‌گیری و نسبت به شیب سخت‌تری تصحیح شده و مقدار بارندگی سالانه (MAP) بر حسب میلی‌متر از رابطه زیر محاسبه می‌شود:

$$ MAP = 137.24 + 0.6445D_0 - 0.00013D_0^2 $$

(1)

$$ P = 0.029(D-38)^2 + 2.7D + 133 $$

(2)

$$ \delta^{13}C_8 = \frac{(\delta^{13}C_8 - 1.00446)C_8 - 4.1}{(13^{13}C_8 - 13^{13}C_8)} $$

(3)

در این رابطه، پر فشار دی اکسید کربن، جوی فشار دی اکسید کربن موجود در خاک دیرینه و $\delta^{13}C_8$ و $\delta^{13}C_8$ به ترتیب، مقدار ترکیب های ایزوتوپی ذی اکسید کربن خاک در دی اکسید کربن دمیده شده در خاک و دی اکسید کربن احتمالی P_8 تابعی از عمق که در عمق 200–400 سانتی‌متری به مقدار تابعی می‌رسد. خاک‌هایی که به خوبی ppmv هواهده و زنگکشی شده‌اند، مقدار P_8 بین 2000 تا 7000 ppmv را نشان می‌دهند [32]. برای این نوع از خاک‌های دیرینه، مقدار 477 ppmv در میانست و مقدار پر از P_8 در ppmv آن را حدود 2000 ppmv در رابطه 1. مقدار ایزوتوپی کالرکیشن است که از رابطه زیر محاسبه می‌شود:

$$ \delta^{13}C_8 = \frac{1000 - 11.98 + 0.127}{1 + 10^{-0.127}} $$

(4)

در این رابطه، $\delta^{13}C_8$ مقدار ایزوتوپی موادهای موجود در خاک با (همان) $\delta^{13}C_8$ است. سرچدام، با قرار دادن همه داده‌ها در رابطه 1 $\delta^{13}C_8$ پر از اکسید کربن، مقدار بارندگی دیرینه از رابطه 1. حدود 432 میلی‌متر در سال برآورد شد که این مقدار با جغرافیایی دیرینه همخوانی دارد (شکل 9). مقدار

بازنده سالانه محاسبه شده در جدول 3 ارائه شده است.
شکل 8 تصاویر رزئی‌ختم کالکریت‌های برش فروردین؛ (الف) تصویر سنگ‌نگارگری (سمت راست؛ XPL) و تصویر تک‌اشتراک (سمت چپ) بلورهای کلسیت سوزنی و رشته‌ای پیرامون دانه‌های کوارتز (ریز بافت بنا)، (ب) تصویر سنگ‌نگارگری (سمت راست؛ XPL) و تصویر تک‌اشتراک حفره‌های موجودات (ریز بافت بنا) و (ب) زمینه میکروئنی (ریز بافت بنا).

شکل 9 (الف) مدل زمین دینامیکی کرتانس (اقتباس از [۳۵] ب) موقعیت جغرافیایی دریانه حوضه رسوبی کهگل‌داغ در زمان زوراسیک یپسن.
کرتانس پیشین، که بین عرض جغرافیایی ۳۰ تا ۴۰ درجه شمالي قرار گرفته است.
ماپه‌ های بررسی که داده میدهند، به دست آمده است با جغرافیای دیرینه که داغ
نتایج زمین‌شیمی کلیس‌های سازند شوریه در برش دیرینه که داغ برجویی با توجه به جغرافیای دیرینه این حوضه رسوبی در زمان زوروسیک پسین- کرانته به پیشین که بر پرسوی گستره حوضه رسوبی که داغ اثر داشته است [23] بررسی شد.
مختصات دیرینه بر پایه ترکیب از توروبی کریم و اکسیژن خاک- های دیرینه کلیس‌های سازند مورد بررسی با این شرایط همکواری دارد. حوضه رسوبی که داغ در زمان زوروسیک پسین- کرانته به پیشین در حوضه جغرافیاییدر دیرینه ۳۰تا ۴۰ درجه شمالی واقع بوده [27] (شكل ۹). که این عرض جغرافیایی دیرینه در بر دارند شرایط آب و هوایی نیمه خشکی بوده است (شکل 9). مقدار پراورش شده میانگین بارندگی سالانه برابر با ۱۴۱تا ۱۴۱ میلی‌متر نیز با عرض جغرافیایی یاد شده همکواری دارد، البته باید توجه داشته که برک سود ورسی در بخش شریف‌های حوضه رسوبی که داغ قرار دارد که مقدار بارندگی آن کمتر از نواحی غربی این حوضه بوده است. پراورش فشار دی اکسیدکرن (100-110ppmv) این گستره زماني و مقابله آن با مقدار فشار دی اکسید کرین ناشی از کلیس‌های سازند مورد بررسی (237/10 تا 298/10 ppmv) نشان می‌دهد که شرایط آب و هوایی در گستره زماني زوروسیک پسین- کرانته به پیشین معتدل بوده.

<table>
<thead>
<tr>
<th>شماره نمونه</th>
<th>قطر (سانتی‌متر) [mm]</th>
<th>MAP</th>
<th>MAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>0CAL</td>
<td>18</td>
<td>148.8</td>
<td>149.3</td>
</tr>
<tr>
<td>0.4CAL</td>
<td>33</td>
<td>158.37</td>
<td>222.83</td>
</tr>
<tr>
<td>0.8CAL</td>
<td>32</td>
<td>154.55</td>
<td>209.41</td>
</tr>
<tr>
<td>1.2CAL</td>
<td>41</td>
<td>163.45</td>
<td>244.96</td>
</tr>
<tr>
<td>1.6CAL</td>
<td>5</td>
<td>141.1</td>
<td>178.49</td>
</tr>
<tr>
<td>2.0CAL</td>
<td>2</td>
<td>141.75</td>
<td>179.77</td>
</tr>
<tr>
<td>2.4CAL</td>
<td>3</td>
<td>157.73</td>
<td>230.46</td>
</tr>
</tbody>
</table>
Structural evolution of the Kopeh Dagh fold-and-thrustbelt (NE Iran) and interactions with the South Caspian Sea Basin and Amu Darya Basin”, Marine and Petroleum Geology. 57 (2004) 68-87.

Spectroscopy in Mineralogy: Chapman Vaughn, D.J. (Eds)

