Characterization of Three Iranian Kaolins for Transformation to Y Zeolite

Zanjanchi, M. A., Keshavarz, S. and Hashemi Pajand, A. A.

Department of Chemistry, Faculty of Science,
University of Guilan, Rasht

Key words: Kaolin, Y Zeolite, Si/Al ratio

Abstract: The extensive use of zeolites as catalysts and catalyst supports in heterogeneous catalysis in the chemical and petrochemical industries is well established. Kaolin is a suitable aluminosilicate mineral which in appropriate conditions can be transformed to a three dimensional zeolite structure with a high surface area. A vast and dispersed kaolin depositories in the country are high potential sources for studying synthesis of zeolites. The kaolins investigated in this study were from Zemouz-Azarbayjan, Rokh-Safed-Khorasan and Samirom-Esfahan. They were activated by calcination at 750°C to convert them to metakaolin. Synthesis gel was prepared from metakaolin, sodium hydroxide, sodium silicate and sodium chloride. Synthesis was performed by hydrothermal method at 100°C. The products were examined by XRD and EDX/SEM for structural and chemical analysis. All three types kaolins were converted to zeolite Y in specific condition. Silicon to aluminum ratio in the prepared zeolite framework was in the range of 1.7-2.15 where the highest value belongs to the zeolite prepared from Samirom kaolin.