Geothermometry and physiochemical condition of Qaleh-Zari Cu-Au ore bearing solution based on chlorite composition and fluid inclusion study

Karimpour, M.H.

Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad

Khin Zaw.

Special center for ore deposit and exploration study,

University of Tasmania, Australia

Keywords: Chlorite, ripidolite, geothermometry, Qaleh Zari.

Abstract: Qaleh-Zari mine is the largest Cu-Au vein type deposit in Iran and is located about 182 km south of Birjand (Khorasan province). The ore grade ranges from Cu = 0.5-8%, Au = 0.5-15 ppm, and Ag = 20-150 ppm. Mineralization concentrated in three major veins. Host rocks are mainly andesite to basaltic andesite (Paleocene-Eocene). The main paragenesis is: quartz, hematite (specularite), chlorite, chalcopyrite, ± pyrite, ± Ag-sulfosalts, and ± gold.

Samples were collected from three veins at depth of -70, -100, -135, and -170 meters. At each level, samples are taken every 10m. Chlorites are mainly Fe-rich ripidolite, however a few samples are brunnsvigite and pycnochlorite. Temperature of chlorites formation were calculated based on the Cathelineau and Nieva (1985) equation. The chlorites were formed between 260-300°C. The temperature of chlorite formation is 10-30°C less than temperature measured from fluid inclusion. Using chlorite composition and fluid inclusion data from Qaleh-Zari, new equation is presented for calculation of temperature for chlorite formation. The ore fluid contained

\[\log m_{H_2S} = -3 \text{ to } -3.5, \log m_{H_2S} < -5.5, \log f_{O_2} = -30 \text{ to } -29. \]