Characterisation of p-Si/SiGe/Si inverted remote doped structures using X-ray and electrical techniques

M. A. Sadeghzadeh

Department of physics, University Of Yazd, Yazd, IRAN

(Received: 30/8/2006, received in revised form: 6/3/2007)

Abstract: In this work, the epitaxially grown, lattice–matched p-Si/Si$_1-x$Ge$_x$/Si inverted remote doped structures have been characterized using X-ray and electrical techniques. The Si cup layer thickness (l_c) and Ge content (x) have been determined from computer simulation of intensity and angular separation of (004) peaks observed in the X-ray diffraction pattern due to misorientation of corresponding Bragg planes of Si and SiGe layers. On the other hand, a quasi two dimensional hole gas (2DHG) is formed in the compressively strained alloy of these structures and its areal density (n_s) has been measured by Hall experiment and can be controlled by applying a voltage (V_g) to the artificial gate. In the electrical technique, x and l_c characteristics have been obtained using theoretical calculations of the linear dependence of n_s versus V_g. Finally, the uncertainty and partial inconsistent of the results have been explained in terms of the affecting effects.

Keywords: Si/SiGe structure, Si/SiGe characterisation, X-ray and Hall technique.