Investigation of room temperature ferromagnetic behavior in Mn doped ZnO nanoparticles

N. Sarraf1, A. Hasanpour*2, A. Hashemizade Aghda1, A. Akhound1

1-Physics Department, Faculty of Sciences, Payame Noor University (PNU) Tehran, Iran
2-Physics Department Faculty of Sciences, Islamic Azad University, Ahvaz Branch, Ahvaz, Iran

(Received: 1/6/2014, in revised form: 19/8/2014)

Abstract: In this research, work nanopowders of Zn\textsubscript{1-x}Mn\textsubscript{x}O (0.0 \leq x \leq 0.1) dilute magnetic semiconductor were prepared via sol-gel auto-combustion method. The crystal structure and phase purity of samples were confirmed by X-ray powder diffraction (XRD) analysis. The particle sizes were found to be 5-35 nm from Transmission Electron Microscopy (TEM) and Scherer's formula. The hysteresis in the M-H behavior shows the presence of room temperature ferromagnetism in Mn doped ZnO. XPS results show that there is Mn2+ ions in all Mn doped samples. Antiferromagnetic interaction between neighboring Mn-Mn ions suppressed the ferromagnetism at higher doping concentrations of Mn.

Keywords: Dilute magnetic semiconductor; zinc oxide; sol-gel method.