Volume 25, Issue 4 (1-2018)                   www.ijcm.ir 2018, 25(4): 823-844 | Back to browse issues page

XML Persian Abstract Print

1- Lorestan University
2- University of Tabriz
Abstract:   (5347 Views)
The Mazra'eh Shadi is located about 130 km northeast of Tabriz (NW Iran) in the Arasbaran metallogenic belt. The deposit occurs as a series of veins within the Eocene andesites. Mineralization shows epithermal system that controlled by fault distribution. Epithermal textures within the veins include comb, vaggy quartz, cockade, boxworke, plate calcite and breccia. Pyrite is the main ore mineral associated with chalcopyrite, chalcocite, covellite, sphalerite, galena and gold. The result of geochemistry on the small rock samples from silica veins shows values of gold (max17100 ppb), Pb(max 21100 ppm), Ag(max 9.43ppm), Cu(max 611ppm) and Zn (max 333 ppm). Microthermometric studies were conducted on quartz samples from silicified and mineralized zones and provides substantial micro-thermometric data for a new interpretation. Fluid inclusions generally occur in range from 5 to 90 μm in size. Three types of fluid inclusions are typically observed at Mazra'eh Shadi:(1) liquid-rich two-phase, (2) vapour-rich two-phase (3) vapour-rich mono-phase. The homogenization temperatures of all inclusions from 160 to 324 °C and the average of homogenization temperature is 228°C .The salinities are 0.17–5.1 wt.% NaCl equiv. The last ice-melting temperature is between –2.2 and -3.2°C. All fluid inclusions are plotted into the epithermal box and into the region between the primary magmatic water box and the meteoric water. Mineralization of Au is the result of pyrite precipitation, dilution- mixing of an oxidized meteoric water decreasing of pH, boiling and fluid mixing and there are two fluids participated in the formation of Mazra'eh Shadi deposit. Fluid inclusion data shows the depth of mineralization at Mazra'eh Shadi deposit probably ranged from 230 m to 380 m below the paleosurface and three-dimensional graphs confirm the deposition of lead and zinc in with high temperature-low salinity fluid and deposition of gold with low temperature-high salinity fluid. The zoning pattern shows clearly base metals such as Cu, Pb, Zn and Mo occur at the deepest levels, whereas precious metals occur at higher elevations with respect to base metals due to boiling of hydrothermal fluids in epithermal system.
Full-Text [PDF 128 kb]   (1391 Downloads)    
Type of Study: Research | Subject: Special

1. [1] Riou R., Dupuy C., Dostal J., "Geochemistry of coexisting alkaline and calc- alkaline volcanic rocks from northern Azerbaijan (N.W.Iran)", Journal of Volcanology and Geothermal Research, V. 11 (1981) 253-275. [DOI:10.1016/0377-0273(81)90026-3]
2. [2] Sillitoe H.R., Hedenquist J.W., "Linkage between volcanotectonic settings, ore-fluid compositions, and epithermal precious- metal deposits. Society of Economic Geologist", Special Publication 10 (2003) 315-343.
3. [3] Alavi M., "Regional stratigraphy of the Zagros fold-thrust belt of Iran and its proforeland evolution", American Journal of Science. (2004) 304, 1–20. [DOI:10.2475/ajs.304.1.1]
4. [4] Berberian M., King G.C.P., "Toward a paleogeography and tectonic evolution of Iran", Canadian Journal of Earth Sciences. 18 (1981) 210–265. [DOI:10.1139/e81-019]
5. [5] Bonini M., Corti G., Sokoutis D., Vannucci G., Gasperini P., Cloetingh S., "Insights from scaled analogue modelling into the seismotectonics of the Iranian region", Tectonophysics 376 (2003) 137–149. [DOI:10.1016/j.tecto.2003.07.002]
6. [6] Mohajjel M., Fergusson C.L., Sahandi M.R., "Cretaceous–Tertiary convergence and continental collision, Sanandaj–Sirjan zone, western Iran", Journal of Asian Earth Sciences. 21 (2003) 397–412. [DOI:10.1016/S1367-9120(02)00035-4]
7. [7] Richards J.P., Wilkinson D., Ullrich T., "Geology of the Sari Gunay epithermal gold deposit northwest Iran", Economic Geology. 101 (2006) 1455–1496. [DOI:10.2113/gsecongeo.101.8.1455]
8. [8] Regard V., Bellier O., Thomas J.C., Bourlès D., Bonnet S., Abbassi M.R., Braucher R., Mercier J., Shabanian E., Soleymani S., Feghhi K.h., "Cumulative right-lateral fault slip rate across the Zagros–Makran transfer zone: role of the Minab–Zendan fault system in accommodating Arabia–Eurasia convergence in southeast Iran", Geophys. Journal. Int. 162 (2005) 177–203. [DOI:10.1111/j.1365-246X.2005.02558.x]
9. [9] Shafiei B., Haschke M., Shahabpour J., "Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks southeastern Iran", Mineral Deposita 44 (2009) 265–283. [DOI:10.1007/s00126-008-0216-0]
10. [10] Sterner S.M., Bodnar R.J., "Synthetic fluid inclusion in natural quartz I. Compositional types synthesized and applications to experimental geochemistry", Geochimica et Cosmochimica Acta V. 48 (1984) 2659-2668. [DOI:10.1016/0016-7037(84)90314-4]
11. [11] Bakker RJ., "Optimal Interpretation of Microthermometrical Data from Fluid Inclusion; Thermodynamic Modelling and Computer Programming, University Heidelberg", Germany (1999) pp.54.
12. [12] Bakker RJ., "Clathrates: Computer programs to calculate fluid inclusion V-X properties using clathrate melting temperatures", Computers & Geosciences, V. 23 (1997) 1-18. [DOI:10.1016/S0098-3004(96)00073-8]
13. [13] Brown P.E., "Flincor: a microcomputer program for the reduction and investigation of fluid-inclusion data", Ameracan Mineralogist, 74 (1989) 1390–1393.
14. [14] Rassi R., Afzal P., "Correlation between Au Lithogeochemical Anomalies and Fault-density using Geostatistical and Fractal Modeling in Sharafabad-Hizehjan Area, NW Iran", Universal Journal of Geoscience 3(2) (2015) 51-58.
15. ]15[ پورنیک پ.، "گزارش اکتشافات تفصیلی طلا در محدوده اکتشافی شرف‌آباد- هیزه‌جان، کانی‌سازی مزرعه شادی"، سازمان زمین‌شناسی و اکتشافات معدنی کشور، (1385) 264 صفحه.
16. [16] Roedder E., "Fluid inclusions. Mineralogical Society of America", Reviews in Mineralogy, V. 12 (1984) PP 644.
17. [17] Albinson T., Norman D. I., Cole D., Chomiak B., "Controls on formation of low sulfidation epithermal deposits in Mexico: constraints from fluid inclusion and stable isotope data", Society of Economic Geologists Special Publication 8 (2001) 1-32.
18. [18] Hedenquist J. W., Henley R. W., "Effect of CO2 on freezing point depression measurements of fluid inclusions: Evidence from active system and application to epithermal studies", Economic Geology, V. 80 (1985) 1379-1406. [DOI:10.2113/gsecongeo.80.5.1379]
19. [19] Ohmoto H., Goldhaber M.B., "Sulfur and carbon isotopes: In H.L. Barnes (ed.), Geochemistry of hydrothermal ore deposits", 3rd ed., New York, John Wiley and Sons (1997) 517-611.
20. [20] Henley R. W., Brown K. L., i Reviews in Economic Geology, 2 (1985) 25-44.
21. [21] Pokrovski G. S., Borisova Yu. A., Harrichoury J.C., "The effect of sulfur on vapor- liquid fractionation of metals in hydrothermal systems", Earth and Planetary Science Letters 266 (3-4), (2008) 345-362. [DOI:10.1016/j.epsl.2007.11.023]
22. [22] Wilkinson J.J., "Fluid Inclusion in Hydrothermal Ore Deposits", Elsevier, Lithos 55 (2001) 229 – 272. [DOI:10.1016/S0024-4937(00)00047-5]
23. [23] Hedenquist J.W., Arribas A., "Evolution of an intrusion-centered hydrothermal system: far southeast Lepanto porphyry and epithermal Cu-Au deposits, Philippines", Economic Geology 93 (1998) 373–404. [DOI:10.2113/gsecongeo.93.4.373]
24. [24] Naden J., Killias S.P., Darbyshire D.P.F., "Active geothermal systemwith entrained seawater as modern analogs for transitional volcanic-hosted massive sulfide and continental magmato-hydrothermal mineralization: the example of Milos Island", Greece. Geology 33(2005) 541–544. [DOI:10.1130/G21307.1]
25. [25] Lattanzi P., "Applications of fluid inclusions in the study and exploration of mineral deposits", European Journal of Mineralogy 3 (1991) 689–697. [DOI:10.1127/ejm/3/4/0689]
26. [26] Simmons S.F, Browne P.R.L., "Hydrothermal minerals and precious metals in the Broadlands-Ohaaki geothermal system: Implications for understanding low sulfidation epithermal environments", Economic Geology, 95 (2000) 971-999. [DOI:10.2113/gsecongeo.95.5.971]
27. [27] Drummond SE., Ohmoto H., "Chemical evolution and mineral deposition in boiling hydrothermal systems", Economic Geology, V, 80 (1985) 126–147.
28. [28] Hedenquist J.W., Arribas A., Gonzalez-Urien, E., "Exploration for epithermal gold. In: Hagemann, S.G., Brown, P.E. (Eds.), Gold in 2000", Reviews in Economic Geology, 13 (2000).245–277
29. [29] Bodnar R.J., "Revised equation and table for determining the freezing point depression of H2O–NaCl solutions", Geochimica et Cosmochimica Acta 57 (1993) 683–684. [DOI:10.1016/0016-7037(93)90378-A]
30. [30] Wood S.A., Samson I.M., "Solubility of ore minerals and complexation of ore metals in hydrothermal solutions", Reviews in Economic Geology, 10 (1998) 33–80.
31. [31] Haas J.L., Jr., "The effect of salinity on the maximum thermal gradient of a hydrothermal system at hydrostatic pressure", Economic Geology, 66 (1971) 940-946. [DOI:10.2113/gsecongeo.66.6.940]
32. [32] Simmons S.F., "Hydrologic implications of alteration and fluid inclusion studies in the Fresnillo district, Mexico: Evidence for a brine reservoir and a descending water table during the formation of hydrothermal Ag-Pb-Zn ore bodies", Economic Geology, 86 (1991) 1579-1602. [DOI:10.2113/gsecongeo.86.8.1579]
33. [33] Barnes H.L., "Zoning of ore deposits: types and causes", Transactions of the Royal Society Edinburgh, 69 (1975) 295-311 [DOI:10.1017/S008045680001526X]
34. [34] Buchanan L. J., "Precious Metal Deposits Associated with Volcanic Environments in the Southwest: In Relations of Tectonics to Ore Deposits in the Southern Cordillera. Geological Society of Arizona", Digest, V. 14 (1981) 237–262.
35. [35] Grancea L., Bailey L., Leroy J., Banks D., Marcoux E., Milési JP., Cuney M., André AS. D., Istvan D., Fabre C., "Fluid evolution in the Baia Mare epithermal gold/polymetallic district, Inner Carpathians", Romania. Mineralium Deposita, V. 37 (2002) 630–647. [DOI:10.1007/s00126-002-0276-5]
36. [36] Arribas A., Jr., Cunningham C.G., Rytuba J.J., Rye R.O., Kelly W.C., Podwysocki M.H., McKee E.H., Tosdal R.M., "Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit", Spain: Economic Geology, 90 (1995) 795-822. [DOI:10.2113/gsecongeo.90.4.795]
37. [37] John D., Hofstra A.H., Fleck R.J., Brummer J.E., Saderholm E.C., "Geologic setting and genesis of the Mule Canyon low sulfidation epithermal goldsilver deposit", North-Central Nevada: Economic Geology, 98 (2003) 425-463 [DOI:10.2113/gsecongeo.98.2.425]
38. [38] Simmons S.F., Christensen B.W., "Origins of calcite in a boiling geothermal system", American Journal of Science, 294 (1994) 361-400. [DOI:10.2475/ajs.294.3.361]
39. [39] Alderton D.H.M., Fallick A.E., "The nature and genesis of gold-silver-tellurium mineralization in the Metaliferi Mountains of Western Romania", Economic Geology, 95(2000) 495-516. [DOI:10.2113/95.3.495]
40. [40] Chou I. M., "Phase relations in the system NaCl–KCl–H2O. III: solubilities of halite in vapour-saturated liquids above 445 8C and redetermination of phase equilibrium properties in the system NaCl–H2O to 1000 8C and 1500 bars", Geochimica et Cosmochimica Acta 51 (1987) 1965 -1975. [DOI:10.1016/0016-7037(87)90185-2]
41. [41] Calagari A. A., "Fluid inclusion studies in quartz veinlets in the porphyry copper deposit at Sungun, East-Azarbaidjan, Iran.", Journal of Asian Earth Sciences 23 (2004) 179–189 [DOI:10.1016/S1367-9120(03)00085-3]
42. [42] Ahmad S.N., Rose A.W., "Fluid inclusions in porphyry and skarn ore at Santa Rita, New Mexico", Economic Geology 75 (1980) 229–250. [DOI:10.2113/gsecongeo.75.2.229]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.