Volume 25, Issue 4 (1-2018)                   www.ijcm.ir 2018, 25(4): 739-748 | Back to browse issues page


XML Persian Abstract Print


Payame Noor University
Abstract:   (3309 Views)
Basic rocks appear as cumulative hornblende gabbros in the Namen pluton, West of Sabzevar. One outcrop of these rocks contains magnetite ore patches. Although magnetite- bearing hornblende gabbro (MHG) and other hornblende gabbros (HG) have similar mineralogy, their trace element compositions are completely different. Trace element analysis of magnetite minerals by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) method on the MHG, HG and ore (MG) indicate that all magnetites could be classified as Ti and V enriched magmatic magnetite. MG and MHG magnetites have similar composition but trace element composition of HG magnetites display distinct characteristics. The HG magnetites are enriched in Mg, Al, Ga, Y, Nb and REE; while the MG and MHG have relatively higher concentration of Ti, V, Cr, Mn and Zn. These two groups show different trends in the REE diagrams. The MG and MHG magnetites have tetrahedral REE pattern with depleted LREE [(La/Yb)N= 0.46]; while HG magnetites illustrate relative enrichment of LREE/HREE [(La/Yb)N= 2.67]. The incorporation of magnetite trace elements and whole rocks geochemical data confirm the role of volatile phase separation in the gabbroic magma evolution in the Namen pluton.
Full-Text [PDF 129 kb]   (1011 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Giacomini F., Tiepolo M., Dallai, L., Ghezzo, C., "On the onset and evolution of the Ross-orogeny magmatism in North Victoria Land- Antarctica", Chemical Geology 240 (2007) 103–128. [DOI:10.1016/j.chemgeo.2007.02.005]
2. [2] Molina J.F., Scarrow J.H., Montero P.G., Bea F., "High-Ti amphibole as a petrogenetic indicator of magma chemistry: evidence for mildly alkalic-hybrid melts during evolution of Variscan basic–ultrabasic magmatism of Central Iberia", Contribution to Mineralogy and Petrology 158 (2009) 69-98. [DOI:10.1007/s00410-008-0371-4]
3. [3] مظهری، س.ع.، قلمقاش، ج.، مظلومی بجستانی، ع.ر.، حاج علیلو، ب.، "کاربرد ترکیب عناصر جزئی کوارتز در تفسیر پتروژنتیکی گرانیتوئیدهای نقده، شمال غرب زون سنندج- سیرجان"، مجله بلورشناسی و کانی شناسی ایران (1391) سال بیستم، شماره3، صفحات 514-505.
4. [4] Jacamon F., Larsen R.B., "Trace element evolution of quartz in the charnockitic Kleivan granite, SW-Norway: The Ge/Ti ratio of quartz as an index of igneous differentiation", Lithos 107 (2009) 281–291. [DOI:10.1016/j.lithos.2008.10.016]
5. [5] مظهری، س.ع.، "تغییر ترکیب شیمی آپاتیت در انواع گرانیت و کاربرد آن در سنگ شناسی: بررسی موردی از توده های نقده، زوزن، بانه و شیرکوه"، مجله بلورشناسی و کانی شناسی ایران (1393) سال بیست و دوم، شماره2، صفحات 256-243.
6. [6] Nadoll P., Angerer T., Mauk J.L., French D., Walshe J., "The chemistry of hydrothermal magnetite: a review", Ore Geology Review 61 (2014) 1-32. [DOI:10.1016/j.oregeorev.2013.12.013]
7. [7] Zhao W.W., Zhou M.F., "In-situ LA-ICP-MS trace elemental analyses of magnetite: the Mesozoic Tengtie skarn Fe deposit in the Nanling Range, South China", Ore Geology Review 65(2015) 872-883. [DOI:10.1016/j.oregeorev.2014.09.019]
8. [8] Liu P.P., Zhou M.F., Chen W.T., Gao J.F., Huang X.W., "In-situ LA-ICP-MS trace elemental analyses of magnetite: Fe-Ti-(V) oxide-bearing mafic-ultramafic layered intrusions of the Emeishan Large Igneous Province, SW China", Ore Geology Review 65 (2015) 853-871. [DOI:10.1016/j.oregeorev.2014.09.002]
9. [9] مظهری س.ع.، مجتهدی فر و.، جعفریان ع.، " ژئوشیمی، سنگ زایی و کانی زایی سنگهای نفوذی نامن، جنوب غربی پهنه سبزوار"، مجله بلورشناسی و کانی شناسی ایران، شماره 23 (1394) ص 532-517.
10. [10] نبوی، م.ح.، "دیباچه‌ای بر زمین شناسی ایران"، انتشارات سازمان زمین شناسی (1355).
11. [11] Khalatbari Jafari M., Babaie H.A., Gani M., "Geochemical evidence for Late Cretaceous marginal arc-to-backarc transition in the Sabzevar ophiolitic extrusive sequence, northeast Iran", Journal of Asian Earth Sciences, 70-71 (2013) 209–230. [DOI:10.1016/j.jseaes.2013.03.015]
12. [12] Shafaii Moghadam H., Zaki Khedr M., Arai S., Stern R.S., Ghorbani G., Tamura A., Ottley C., "Arc-related harzburgite–dunite–chromitite complexes in the mantle section of the Sabzevar ophiolite, Iran: A model for formation of podiform chromitites", Gondwana Research 27 (2015) 575-593. [DOI:10.1016/j.gr.2013.09.007]
13. [13] Rossetti F., Nasrabadi M., Vignaroli G., Theye T., Gerdes V., Razavi M. H., Moin Vaziri H., "Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): implications for the closure of the Mesozoic peri-Tethyan oceans in central Iran", Terra Nova 22 (2010) 26-34. [DOI:10.1111/j.1365-3121.2009.00912.x]
14. [14] Khalatbari Jafari M., Babaie H.A., Mirzaie M. "Geology, petrology and tectonomagmatic evolution of the plutonic crustal rocks of the Sabzevar ophiolite, northeast Iran", Geological Magazine, 150 (2013) 862-884. [DOI:10.1017/S0016756812000933]
15. [15] Alamnia Z., Karimpour M.H., Homam S.M., Finger F., "The magmatic record in the Arghash region (northeast Iran) and tectonic implications", International Journal of Earth Science, 102 (2013) 1603-1625. [DOI:10.1007/s00531-013-0897-1]
16. [16] قورچی روکی م.، کریمپور م.ح.، ابراهیمی نصرآبادی خ.، "تعیین سن، منشأ و جایگاه تکتونیکی توده‌های نفوذی جنوب سبزوار"، پترولوژی، شماره 16 (1392) ص 20-1.
17. [17] Mazhari S.A., "Petrogenesis of adakite and high-Nb basalt association in the SW of Sabzevar Zone, NE of Iran: Evidence for slab melt-mantle interaction", Journal of African Earth Sciences, 116 (2016) 170-181. [DOI:10.1016/j.jafrearsci.2015.12.026]
18. [18] Nadoll P., Mauk J.L., Hayes T.S., Koeni A.E., Box S.E., "Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt Supergroup, United States" Economic Geology, 107 (2012), 1275-1292. [DOI:10.2113/econgeo.107.6.1275]
19. [19] Dare S.A.S., Barnes S.-J., Beaudoin G. "Variation in trace element content ofmagnetite crystallized from a fractionating sulfide liquid, Sudbury, Canada: implications for provenance discrimination", Geochimemica et Cosmochimica Acta, 88 (2012) 27-50. [DOI:10.1016/j.gca.2012.04.032]
20. [20] Dupuis C., Beaudoin G., "Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types", Mineral. Deposita 46 (2011) 319-335. [DOI:10.1007/s00126-011-0334-y]
21. [21] Nakamura N., "Determination of REE, Ba, Fe, Mg, Na and K in carbonaceous and ordinary chondrites", Geochimica et Cosmochimica Acta (1974) 38 757-775. [DOI:10.1016/0016-7037(74)90149-5]

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.