Volume 30, Issue 4 (12-2022)                   www.ijcm.ir 2022, 30(4): 7-7 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Teimouri S, Ghorbani M, Modabberi S. Petrography and mineral chemistry of metasomatites related to Iron-Apatite mineralization in Kiruna-type deposits in the Bafq region with a focus on Choghart and Chadormalu mining district, Central Iran. www.ijcm.ir 2022; 30 (4) :7-7
URL: http://ijcm.ir/article-1-1814-en.html
Abstract:   (983 Views)
The Iron-apatite deposits of Choghart and Chadormalu mining district are located in the western margin of the Bafq block and are hosted by Precambrian metamorphic basement complex, Late Precambrian sedimentary-volcanic units, and Late Precambrian-Early Cambrian plutonic rocks. The origin and relation of the rocks for a long time, which are known as metasomatites, have always been questioned. Based on petrography and mineral chemistry studies, five types of hydrothermal alterations have identified in these rocks. The oldest one is Na-alteration, which occurs at farther distances of iron deposits and is characterized by the presence of chessboard albite. The youngerst one is sodic-calcic alteration which is widespread and two-stages of the metasomatism model are characterized by the presence of tremolite-actinolite and is synchronous with the Fe-oxides. Potassic alteration occurs after two previous alteration phases, because of the influence of K-rich fluids and the formation of K-feldspar and secondary biotite. Silicate and sericite alteration has occurred as a late phase in the region.
 
Full-Text [PDF 4749 kb]   (367 Downloads)    
Type of Study: Research | Subject: Special

References
1. ]1[ Berberian F., "Tectono-plutonic episodes in Iran. In Gupta HK, Delany FM (eds) Zagros-Hindu Kush-Himalaya geodynamic evolution", American Geophysical :union: Geodynamic Series (1981) 5-32. [DOI:10.1029/GD003p0005]
2. ]2 [Samani B. A., "Metallogeny of the Precambrian in Iran", Precambrian research, 39(1) (1988) 85-106. [DOI:10.1016/0301-9268(88)90053-8]
3. ]3[ Ghorbani M., "A summary of geology of Iran. In: Ghorbani, M. (ed.), The economic geology of Iran: Mineral deposits and natural resources. Springer Science and Business Media", Dordrecht, (2013) pp 45-64. [DOI:10.1007/978-94-007-5625-0_2]
4. ]4[ Moore F., Modabberi S., "Origin of Choghart iron oxide deposit, Bafq mining district, Central, Iran: New isotopic and geochemical evidence", Journal of Scientific of Islamic Republic of Iran, 14 (2003) 259-269.
5. ]5[ Jami M., "Geology, geochemistry and evolution of the Esfordi phosphate-iron deposit, Bafq area, Central Iran", PhD Thesis. University of New South Wales (2006).
6. ]6[ Torab F., "Geochemistry and metallogeny of magnetite-apatite deposits of the Bafq mining district, Central Iran. Unpublished PhD Thesis", Clausthal University of Technology, Germany (2008).
7. ]7[ Bonyadi Z., Davidson G.J., Mehrabi B., et al., "Significance of apatite REE depletion and monazite inclusions in the brecciated Se-Chahun iron oxide-apatite deposit, Bafq district, Iran: insights from paragenesis and geochemistry", Chem. Geol. 281 (2011) 253-269. [DOI:10.1016/j.chemgeo.2010.12.013]
8. ]8[ Stosch H.G., Romer R.L., Daliran F., Rhede D, "Uranium-Lead ages apatite from iron oxide ores of the Bafq district, East-Central Iran", Mineralium Deposita, 46 (2011) 9- 21. [DOI:10.1007/s00126-010-0309-4]
9. ]9[ Porter T.M., "Current understanding of iron oxide associated-alkali altered mineralized systems: Part I - An overview. In: Porter, T.M. (Ed.), Hydrothermal iron oxide copper-gold and related deposits: A global perspective", vol. 3. PGC Publishing, (2010a) pp. 5-32.
10. ]10[ Skirrow R.G., "Iron oxide copper-gold (IOCG) deposits - A review (part 1): Settings, mineralogy, ore geochemistry and classification. Geoscience Australia, GPO Box 378, Canberra", ACT Australia 2601, Australia (2021). [DOI:10.31223/X5C330]
11. ]11[ Pollard P.J., "An intrusion-related origin for Cu-Au mineralization in iron oxide-copper- gold (IOCG) provinces", Miner. Deposita 41 (2006) 179. [DOI:10.1007/s00126-006-0054-x]
12. ]12[ Sillitoe R.H., "Iron oxide-copper-gold deposits: An Andean view", Mineralium Deposita 38 (7) (2003) 787-812. [DOI:10.1007/s00126-003-0379-7]
13. ]13[ Jami M., Dunlop A.C., Cohen D.R., "Fluid inclusion and stable isotope study of the Esfordi apatite-magnetite deposit", Central Iran. Economic Geology, 102 (2007) 1111-1128. [DOI:10.2113/gsecongeo.102.6.1111]
14. ]14[ Torab F.M., Lehmann B., "Magnetite-apatite deposits of the Bafq district, Central Iran: Apatite geochemistry and monazite geochronology", Mineralogical Magazine, 71 (2007) 347-363. [DOI:10.1180/minmag.2007.071.3.347]
15. ]15[ Taghipour S., Kananian A., Harlov D., Oberhänsli R., "Kiruna-type iron oxide-apatite deposits, Bafq district, Central Iran: Fluid-aided genesis of fluorapatite-monazite-xenotime assemblages", Can Miner. 53 (2015) 479-496. [DOI:10.3749/canmin.4344]
16. ]16[ Khoshnoodi K., Behzadi M., Gannadi-Maragheh M., Yazdi M., "Alkali metasomatism and Th-REE mineralization in the Choghart deposit, Bafq district, Central Iran", Geol. Croatica 70 (2017) 53-69. [DOI:10.4154/gc.2017.03]
17. ]17[ Aghanabati A., "The Geology of Iran. Geological Survey and Mineral Exploration of Iran", Tehran, 586 p. (2004) (In Persian).
18. ]18[ Ramezani J., Tucker R.D., "The Saghand region, Central Iran: U-Pb geochronology", petrogenesis and implications for Gondwana tectonics. Am. J. Sci. 303 (2003) 622-665. [DOI:10.2475/ajs.303.7.622]
19. ]19[ Nadimi A., "Evolution of the Central Iranian basement. Gondwana Res. 12, 324-333. Nance, R.D., Gutierez-Alonso, G., Keppie, J.D., Linnemann, U., Murphy, J.B., Quesada, C., Strachan, R.A., Woodcock, N., 2010. Evolution of the Rheic Ocean", Gondwana Res. 17 (2-3) (2007) 194-222. [DOI:10.1016/j.gr.2009.08.001]
20. ]20[ Shamsipour R., Khakzad A., Rasa I., Vosoughi-Abedini M., "Mineralogy and fluid inclusion studies of Chador-Malu iron ore deposit, Bafq. Central Iran. Res. J. Univ. Isfahan 29, 129-144 (In Persian)", Sillitoe, R.H., Burrows, D.R., 2002.
21. ]21[ Rajabi A., "Ore controlling parameters and genesis of sedimentary exhalative Zn-Pb (SEDEX type) deposits, Zarigan-Chahmir area, East of Bafq, Central Iran", Ph.D. Thesis, Faculty of Science, Tarbiat Modarres University, Iran (2012).
22. ]22[ Ghorbani M., "The Geology of Iran: Tectonic, magmatism and metamorphism", Springer Nature, (2021) 3030711099. [DOI:10.1007/978-3-030-71109-2]
23. ]23[ Mousavi Torkian, "Geothermobarometry of Tekieh intrusive complex (south of Qorveh, Kurdistan Province)",, Constraint on using mineral chemistry of amphibole. Ijcm. 29 (4) (2021) 853-870. (In Persian). [DOI:10.52547/ijcm.29.4.853]
24. ]24[ Watson E.J., Swindles G.T., Lawson I.T. et al., "Do peatlands or lakes provide the most comprehensive distal tephra records?", Quaternary Science Reviews, 139 (2016) 110-128. [DOI:10.1016/j.quascirev.2016.03.011]
25. ]25[ Watson E.J., Swindles G.T., Lawson I.T., et al., "The presence of Holocene cryptotephra in Wales and southern England", Quaternary Science Reviews. 32(4)( 2017) 493-500 [DOI:10.1002/jqs.2942]
26. ]26[ Ovalle J.T.X.S., Cruz N.L., Reich M., Barra F., Simon A.C., Konecke B.A., Rodriguez- Mustafa M.X.A.A., Deditius A.P., Childress T.M., Morata D., "Formation of massive iron deposits linked to explosive volcanic eruptions", Sci. Rep. 8 (1) (2018) 14855. [DOI:10.1038/s41598-018-33206-3]
27. ]27[ Rojas P., Barra F., Deditius A., Reich M., Simon A., Roberts M., Rojo M., "New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit", Chile. Ore Geol. Rev. 93 (2018b) 413-435. [DOI:10.1016/j.oregeorev.2018.01.003]
28. ]28[ Salazar E., Barra F., Reich M., Simon A., Leisen M., Palma G., Romero R., Rojo M., "Trace element geochemistry of magnetite from the Cerro Negro Norte iron oxide- apatite deposit, northern Chile", Miner. Deposita 55 (3) (2020) 409-428. [DOI:10.1007/s00126-019-00879-3]
29. ]29[ La Cruz N.L., Ovalle J.T., Simon A.C., Konecke B.A., Barra F., Leisen M., Reich M., Childress T.M., "The geochemistry of magnetite and apatite from the El Laco iron oxide-apatite deposit, Chile", Implications for ore genesis: Economic Geology 115 (7) (2020) 1461-1491. [DOI:10.5382/econgeo.4753]
30. ]30[ Barton M. D., Johnson D. A., "Alternative brine sources for Fe-oxide (-Cu-Au) systems: Implications for hydrothermal alteration and metals: in T. M. Porter (editor), Hydrothermal iron oxide copper-gold and related deposits a global perspective, Australian Mineral Foundation", Glenside, South Australia, (2000) p. 43-60
31. ]31[ Edfelt A., "The Tjarrojakka apatite-iron and Cu (-Au) deposits, northern Sweden: products of one ore forming event. Lulea tekniska universitet", PhD thesis, 167. Haghipour, A., 1977. Geological map of the Biabanak-Bafq area (scale 1: 500,000).
32. ]32[ Barton M.D., Johnson D.A., "Footprints of Fe-oxide (-Cu-Au) Systems", University of Western Australia Special Publication, (2004) pp. 112-116.
33. ]33[ Barton M.D., "Iron oxide (-Cu-Au-REE-P-Ag-U-Co) systems", Treatise on geochemistry, 2nd edition Elsevier, (2014) pp. 515-541. [DOI:10.1016/B978-0-08-095975-7.01123-2]
34. ]34[ Hitzman M.W., "Iron oxide-Cu-Au deposits: What, where, when, and why", In: Porter, T. (Ed.), Hydrothermal iron oxide copper-gold and related deposits: A global perspective, 1. PGC Publishing, Adelaide, (2000) pp. 9-25.
35. ]35[ Corriveau L., Mumin H., "Exploring for iron oxide copper gold deposits: Canada and global analogues", Geol. Assoc. Canada. 20 (2018) 143-155 (Short course notes).
36. ]36[ Heidarian H., Lentz D.R., Alirezaei S., McFarlane C.R.M., Peighambari S., "Multiple stage ore formation in the Chadormalu iron deposit, Bafq metallogenic province, Central Iran: Evidence from BSE imaging and apatite EPMA and LA-ICPMS U-Pb geochronology", Minerals 8, 87 (2018). [DOI:10.3390/min8030087]
37. ]37[ Reyes A.G., "Petrology and mineral alteration in hydrothermal systems: From diagenesis to volcanic catastrophes", Geothermal Training Programme. United Nations University (2000).
38. ]38[ Sadeghi R., "Geochemistry and genesis of Nord anomaly Fe deposit, north of Bafgh, Central Iran", Unpublished MSc Thesis. Tehran University (2007).
39. ]39[ Daliran F., Stosch H.G., Williams P., Jamli H., Dorri M.B., "Early Cambrian iron oxide-apatite-REE (U) deposits of the Bafq district", east Central Iran (2010).
40. ]40[ Leake B.E., Wolley R., Arps C.E.S., Birch W.D., Gilbert M.C., Grice J.D., Hawthorn F.C., Kato A., Kisch H.J., Krivovichev V.G., "Nomenclature of amphiboles: Report of the subcommittee on amphiboles of the international mineralogical association commission on new minerals and mineral names", Canadian Mineralogist, 35 (1997) 219-246
41. ]41[ Sillitoe R., Burrows D., "New field evidence bearing on the origin of the El Laco magnetite deposit, northern Chile", Econ. Geol. 97 (2002) 1101-1109. [DOI:10.2113/gsecongeo.97.5.1101]
42. ]42[ Reyes A.G., "Petrology of Philippine geothermal systems and the application of alteration mineralogy to their assessment", J. Volcanol. Geoth. Res. 43 (1990) 279-309. [DOI:10.1016/0377-0273(90)90057-M]
43. ]43[ Partington G. A., Williams P. J., "Proterozoic lode gold and iron-copper-gold deposits: A comparison of Australian and global examples", Economic Geology 13 (2000) 69-101. [DOI:10.5382/Rev.13.02]
44. ]44[ Sial A.N., Ferreira V.P., Fallick A.E., Jeronimo M., Cruz M., "Amphibole-rich clots in calc-alkalic granitoids in the Borborema province northeastern Brazil", Journal of South American Earth Science. 11 (1998) 457-471. [DOI:10.1016/S0895-9811(98)00034-0]
45. ]45[ Rose N.M., Bird D.K., Liou J.G., "Experimental investigation of mass transfer; albite, Ca-Al-silicates, and aqueous solutions", American Journal of Science January. (1992) 292 (1) 21-57. [DOI:10.2475/ajs.292.1.21]
46. ]46[ Shekarian Y., Hezarkhani A., Anaraki N.N., Hassani A.N., "Geochemistry and petrography of REE-bearing Fe-oxide assemblages in Choghart iron deposit, Yazd, Iran", Arab. J. Geosci. 10 (2017) 273. [DOI:10.1007/s12517-017-2986-0]
47. ]47[ Pollard P.J., "An intrusion-related origin for Cu-Au mineralization in iron oxide-copper gold (IOCG) provinces", Mineralium Deposita 41 (2006) 179. [DOI:10.1007/s00126-006-0054-x]
48. ]48[ Spear J.A., "Micas in igneous rocks, In: Micas, Bailey, S.W., (ed); Mineralogical Society of America", Review in Mineralogy, 13 (1984) 299- 356. [DOI:10.1515/9781501508820-013]
49. ]49[ Deer W.A., Howie R.A., Zussman J., "2nd ed. An introduction to the rock-forming minerals", Essex: Longman Scientific and Technical; New York: Wiley. ISBN 0470218096 (1992) 696pp.
50. ]50[ Nachit H., Ibhi A., Abia E.H., Ohoud M.B., "Discrimination between primary magmatic biotites, preequilibrated biotites and neo formed biotites, Geomaterial (Mineralogy)", Competes Rends. Geosciences, 337 (2005) 1415-1420. [DOI:10.1016/j.crte.2005.09.002]
51. ]51[ Seedorf E., "Porphyry deposits: Characteristics and origin of hypogene features", Econ. Geol. 100 (2005) 251-298.
52. ]52[ Çetinkaplan M., Pourteau A., Candan O., Koralay E., Oberhänsli R., Okay A., Chen Ch., Kozlu H., Sengün F., "P-T-t evolution of eclogite blueschist facies metamorphism in Alanya Massif: time and space relations with HP event in Bitlis", Int J Earth Sci (Geol Rundsch) (2016) 105:247-281. [DOI:10.1007/s00531-014-1092-8]
53. ]53[ Bucher K., Grapes R., "Petrogenesis of metamorphic rocks. 8th edition", Springer Heidelberg Dordrecht London New York (2011). [DOI:10.1007/978-3-540-74169-5]
54. ]54[ Large R.R., Bull S.W., Mc Goldrick, P.J., Walters S., Derrick G.M., Carr G.R., "Stratiform and strata-bound Zn-Pb-Ag deposits in Proterozoic sedimentary basins, northern Australia", Society of Economic Geologists, pp. 561-607 100th Anniversary Volume (2005). [DOI:10.5382/AV100.28]
55. ]55[ John D.A., Ayuso R.A., Barton M.D., Blakely R.J., Bodnar R.J., Dilles J.H., Gray F., Graybeal F.T., Mars J.L., McPhee D.K., Seal R., Taylor R.D., Vikre P.G., "Porphyry copper deposit model, chapter B of mineral deposit models for resource assessment", U.S. Geological Survey, U. S. A, Report 2010-5070 B, 166 pp.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb