دوره 31، شماره 2 - ( 3-1402 )                   جلد 31 شماره 2 صفحات 260-243 | برگشت به فهرست نسخه ها


XML English Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mehrabi B, Chaghaneh N, Tale Fazel E. Mineralization and genesis of the Pb-Zn(-Cu) non-sulfide ore in Chah Mileh deposit (NE Anarak), Central Iran. www.ijcm.ir 2023; 31 (2) :243-260
URL: http://ijcm.ir/article-1-1733-fa.html
مهرابی بهزاد، چقانه نفیسه، طالع فاضل ابراهیم. کانه‌سازی و چگونگی پیدایش کانسنگ غیرسولفیدی سرب-روی (-مس) چاه میله (شمال‌شرق انارک)، ایران مرکزی. مجله بلورشناسی و کانی شناسی ایران. 1402; 31 (2) :243-260

URL: http://ijcm.ir/article-1-1733-fa.html


1- گروه زمین شیمی، دانشکده علوم زمین، دانشگاه خوارزمی، تهران، ایران
2- گروه زمین‌‌شناسی، دانشکده علوم، دانشگاه بوعلی سینا، همدان، ایران
چکیده:   (805 مشاهده)
کانسار سرب-روی (-مس) چاه­میله با تناژ تقریبی یک میلیون تن و عیار 15/2 درصد سرب و روی در کمربند فلززایی یزد- انارک پهنه ایران مرکزی، واقع است. کانی­سازی سولفیدی اولیه شامل گالن، اسفالریت، کالکوپیریت و پیریت در واحد مرمر دولومیتی مجموعه چاه­گربه به سن تریاس میانی رخ داده است. ماده معدنی اغلب با بافت­های برشی، پرکننده فضای خالی، پراکنده و جانشینی شکل گرفته است. کانسنگ غیرسولفیدی کانسار چاه­میله در اثر اکسایش برونزاد کانی­های سولفیدی اولیه طی برهم­کنش­های پیچیده چون راندگی زمین­ساختی، گسترش کارست، تغییرات سطح ایستابی و هوازدگی، در شرایط آب هوای گرم و خشک تشکیل شده است. مهمترین کانی­های غیرسولفیدی کانسار چاه­میله سروزیت، همی­مورفیت، ولفنیت، میمتیت، اسمیت­زونیت، مالاکیت و اکسی- هیدروکسیدهای آهن هستند. در کانسار چاه­میله، تشکیل اسیدسولفوریک و در نتیجه کاهش pH با اکسایش پیریت و سایر کانی­های سولفیدی، افزایش فشار دی اکسید کربن (PCO2)  سیال­ها در اثر خنثی­سازی سیال­های اسیدی با سنگ میزبان کربناتی، آزاد­شدن یون­های سولفاتی و ته­نشینی اکسی- هیدروکسیدهای آهن نقش مهمی در تشکیل کانسنگ غیرسولفیدی دارند. در شرایط اسیدی موجود، فلز روی از منطقه اکسایش مهاجرت کرده و در مناطق دورتر به­صورت کانی­های کربناتی (چون اسمیت­زونیت و کمتر هیدروزنسیت با توجه به مقادیر PCO2(g)) ته­نشین شده، درحالی­که فلز سرب اغلب به­صورت سروزیت در منطقه اکسایش ته­نشین و یا به سطح آهن III اکسیدهای آبدار جذب شده است. براساس یافته­های زمین­شناسی، بافتی و کانی­شناسی، کانسنگ غیرسولفیدی چاه­میله را می­توان از گروه کانسارهای غیرسولفیدی برونزاد، زیررده کانسارهای جانشینی مستقیم (کانسنگ سرخ) در نظر گرفت.     
متن کامل [PDF 8725 kb]   (188 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] Heyl A.V., Bozion C.N., "Oxidized zinc deposits of the United States, part I. General geology", United States Geology Survey Bulletin 1135-A (1962) 52 pp.
2. [2] Hitzman M.H., Reynolds N.A., Sangster D.F., Allen C.R., Carman C.E., "Classification, genesis, and exploration guides for nonsulphide zinc deposits", Economic Geology 98 (2003) 685-714. [DOI:10.2113/gsecongeo.98.4.685]
3. [3] Borg G., "Geological and economical significance of supergene nonsulphide zinc deposits in Iran and their exploration potential", In: Geological Survey of Iran (ed.) Mining and Sustainable Development, 20th World Mining Congress, Tehran, Iran, (2005) 385-390.
4. [4] Appold M.S., Monteiro L.V.S., "Numerical modeling of hydrothermal zinc silicate and sulfide mineralization in the Vazante deposit, Brazil", Geofluids 9 (2009) 96-115. [DOI:10.1111/j.1468-8123.2009.00245.x]
5. [5] Borg G., "The influence of fault structures on the genesis of supergene zinc deposits", Society of Economic Geologists Special Publication 14 (2009) 121-132. [DOI:10.5382/SP.14.11]
6. [6] Slezak P.R., Olivo G.R., Oliveira G.D., Dardenne M.A., "Geology, mineralogy, and geochemistry of the Vazante Northern Extension zinc silicate deposit, Minas Gerais, Brazil", Ore Geology Reviews 56 (2014) 234-257. [DOI:10.1016/j.oregeorev.2013.06.014]
7. [7] Brugger J., McPhail D.C., Wallace M., Waters J., "Formation of willemite in hydrothermal environments", Economic Geology 98 (2003) 819-835. [DOI:10.2113/gsecongeo.98.4.819]
8. [8] Peck W.H., Volkert R.A., Mansur A.T., Doverspike B.A., "Stable isotope and petrologic evidence for the origin of regional marble-hosted magnetite deposits and the zinc deposits at Franklin and Sterling Hill, New Jersey Highlands, United States", Economic Geology 104 (2009) 1037-1054. [DOI:10.2113/econgeo.104.7.1037]
9. [9] Boni M., Gilg H.A., Balassone G., Schneider J., Allen C.R., Moore F., "Hypogene Zn carbonate ores in the Angouran deposit, NW Iran", Mineralium Deposita 42 (2007) 799-820. [DOI:10.1007/s00126-007-0144-4]
10. [10] Boni M., "Supergene Nonsulfide Zinc Ores :State of the Art", Art Abstract at 21st General Meeting of the International Mineralogical Association, Sandton, South Africa, (2014).
11. [11] Borg G., "A review of supergene nonsulphide zinc (SNSZ) deposits-the 2014 update", In: Archibald S.M., Piercey S.J., (eds.) "Current Perspectives of Zinc Deposits", Irish Association for Economic Geology, Dublin, (2015) 123-147.
12. [12] Reichert J., Borg G., "Numerical simulation and a geochemical model of supergene carbonate-hosted nonsulphide zinc deposits", Ore Geology Reviews 33 (2008) 134-151. [DOI:10.1016/j.oregeorev.2007.02.006]
13. [13] Reichert J., "A geochemical model of supergene carbonate-hosted nonsulphide zinc deposits", In: Titley S.R., (ed.) "Supergene Environments, Processes, and Products", Society of Economic Geologists, Special Publication 14 (2009) 69-76. [DOI:10.5382/SP.14.07]
14. [14] Boni M., Mondillo N., "The "Calamines" and the "Others": The great family of supergene nonsulfide zinc ores", Ore Geology Reviews 67 (2015) 208-233. [DOI:10.1016/j.oregeorev.2014.10.025]
15. [15] Rajabi A., Rastad E., Canet C., "Metallogeny of Cretaceous carbonate hosted Zn-Pb Deposits of Iran: geotectonic setting and data integration for future mineral exploration", International Geology Review 54 (2012) 1649-1672. [DOI:10.1080/00206814.2012.659110]
16. [16] Rajabi A., Rastad E., Canet C., "Metallogeny of Permian-Triassic carbonatehosted Zn-Pb and F deposits of Iran: a review for future mineral exploration", Australian Journal of Earth Sciences 60 (2013) 197-216. [DOI:10.1080/08120099.2012.754792]
17. [17] Maghfouri S., Hosseinzadeh M.R., "The early Cretaceous Mansourabad shale-carbonate hosted Zn-Pb (-Ag) deposit, Central Iran: an example of vent-proximal sub-seafloor replacement SEDEX mineralization", Ore Geology Reviews 95 (2018) 20-39. [DOI:10.1016/j.oregeorev.2018.02.020]
18. [18] Maghfouri S., Hosseinzadeh M.R., Choulet F., Lentz D.R., Tajeddin H.A., Movahednia M., Shariefi A., "Nature of ore-forming fluids in the Mehdiabad world-class sub-seafloor replacement SEDEX-type Zn-Pb-Ba-(Cu-Ag) deposit, Iran; constraints from geochemistry, fluid inclusions, and O-C-Sr isotopes", Journal of Asian Earth Sciences 207 (2021) 104654. [DOI:10.1016/j.jseaes.2020.104654]
19. [19] Maanijou M., Tale Fazel E., Hayati S., Mohseni H., Vafaei M., "Geology, fluid inclusions, C-O-S-Pb isotopes and genesis of the Ahangaran Pb-Ag (Zn) deposit, Malayer-Esfahan Metallogenic Province, western Iran", Journal of Asian Earth Sciences 195 (2020) 104339. [DOI:10.1016/j.jseaes.2020.104339]
20. [20] Maghfouri1 S., Choulet F., "Ore-forming processes, O-C isotopes geochemistry, and fluid inclusions in the Darreh-Zanjir fault control MVT-type Zn-Pb deposit: Iran", Arabian Journal of Geosciences 14 (2021) 2083. [DOI:10.1007/s12517-021-08469-2]
21. [21] Maghfouri S., Hosseinzadeh M.R., Rajabi A., Choulet F., "A review of major non-sulfide zinc deposits in Iran", Geoscience Frontiers 9 (2018) 249-272. [DOI:10.1016/j.gsf.2017.04.003]
22. [22] Maghfouri S., Hosseinzadeh M.R. Choulet F., "Supergene nonsulfide Zn-Pb mineralization in the Mehdiabad world-class sub-seafloor replacement SEDEX-type deposit, Iran", International Journal of Earth Sciences 109 (2020) 2531-2555. [DOI:10.1007/s00531-020-01916-7]
23. [23] Reichert J., "A Metallogenetic Model for Carbonatehosted Non-sulfide Zinc Deposits Based on Observations of Mehdi Abad and Iran Kouh, Central and Southwestern Iran", Ph.D. Thesis, University of Martin Luther, Shillong, (2007) 129 pp.
24. [24] Aghanabati A., "Geology of Iran", Geological Survey of Iran, Tehran, (2004) 586 pp.
25. [25] Alavi M., "Tectonostratigraphic synthesis and structural style of the Alborz Mountains system in northern Iran", Journal of Geodynamics 11 (1996) 1-33. [DOI:10.1016/0264-3707(95)00009-7]
26. [26] Kan-Azin Mining Consultant Company., "General exploration report of the iron at Mileh area in Anarak, Isfahan (Scale: 1:25000)", Iranian Mines and Mining Industries Development and Renovation Organization (Imidro), Tehran, Report 1 (2014) 438p.
27. [27] Kan-Azin Mining Consultant Company., "General exploration report of the iron at Mileh area in Anarak, Isfahan (Scale: 1:5000)", Iranian Mines and Mining Industries Development and Renovation Organization (Imidro), Tehran, Report 2 (2015) 214p.
28. [28] Bagheri S., Stampfli G.M., "The Anarak, Jandaq and Posht-e-Badam metamorphic complexes in central Iran: New geological data, relationships and tectonic implications", Tectonophysics 451 (2008) 123-155. [DOI:10.1016/j.tecto.2007.11.047]
29. [29] Sharkovski M., Susov M., Krivyakin B., "Geology of the Anarak area (Central Iran): Explanatory text of the Anarak Quadrangle Map 1:250000", Geological Survey of Iran, Tehran, Reports 19 (1984) 143 pp.
30. [30] Zanchi A., Zanchetta S., Garzanti E., Balini M., Berra F., Mattei M., Muttoni G., "The Cimmerian evolution of the Nakhlak-Anarak area Central Iran and its bearing for the reconstruction of the historyof the Eurasian margin", Geological Society London Special 312 (2009) 261-286. [DOI:10.1144/SP312.13]
31. [31] Zanchi A., Malaspina N., Zanchetta S., Berra F., Benciolini L., Bergomi M., Cavallo A., Javadi H.R., Kouhpeyma M., "The Cimmerian accretionary wedge of Anarak, Central Iran", Journal of Asian Earth Sciences 102 (2015) 45-72. [DOI:10.1016/j.jseaes.2014.08.030]
32. [32] Choulet F., Charles N., Barbanson L., Branquet Y., Sizaret S., Ennaciri A., Badra L., Chen Y., "Non-sulfide zinc deposits of the Moroccan High Atlas: multiscale characterization and origin", Ore Geology Reviews 56 (2014) 115-140. [DOI:10.1016/j.oregeorev.2013.08.015]
33. [33] Taylor J.H., "The formation of supergene galena at Broken Hill, northern Rhodesia", Mineralogical Magazine 31 (1958) 908-913. [DOI:10.1180/minmag.1958.031.242.03]
34. [34] Terracciano R., "Willemite mineralization in Namibia and Zambia", Ph.D. Thesis, Università degli Studi di Napoli Federico II, Italy, (2008) 178 pp.
35. [35] Borg G., Kärner K., Buxton M., Armstrong R., Schalk W.,"Geology of the Skorpion non-sulphide deposit, southern Namibia", Economic Geology 98 (2003) 749-771. [DOI:10.2113/gsecongeo.98.4.749]
36. [36] Takahashi T., "Supergene alteration of zinc and lead deposits in limestone". Economic Geology 55 (1960) 1083-1115. [DOI:10.2113/gsecongeo.55.6.1083]
37. [37] Sangameshwar S.R., Barnes H.L., "Supergene processes in zinc-lead-silver sulfides ores in carbonates", Economic Geology 78(1983) 1379-1397. [DOI:10.2113/gsecongeo.78.7.1379]
38. [38] Williams P.A., "Oxide Zone Geochemistry", Ellis Horwood Ltd., Chichester, England, (1990) 286 pp.
39. [39] Balci N., Mayer B., Shanks III W.C., Mandernack K.W., "Oxygen and sulfur isotope systematics of sulfate produced during abiotic and bacterial oxidation of sphalerite and elemental sulfur", Geochimica et Cosmochimica Acta 77 (2012) 335-351. [DOI:10.1016/j.gca.2011.10.022]
40. [40] Heidel C., Tichomirowa M., Junghans M., "Oxygen and sulfur isotope investigations of the oxidation of sulfide mixtures containing pyrite, galena and sphalerite", Chemical Geology 342 (2013) 29-43. [DOI:10.1016/j.chemgeo.2013.01.016]
41. [41] Domènech C., De Pablo J., Ayora C., "Oxidative dissolution of pyritic sludge from the Aznalcóllar mine (SW Spain)", Chemical Geology 190 (2002) 339-353. [DOI:10.1016/S0009-2541(02)00124-9]
42. [42] Pirajno F., Burlow R., Huston D., "The Magellan Pb deposit, Western Australia; a new category within the class of supergene non-sulfide mineral systems", Ore Geology Reviews 37 (2010) 101-113. [DOI:10.1016/j.oregeorev.2010.01.001]
43. [43] Herbert R.B., "Sulphide oxidation in mine waste deposits, a review with emphasis on dysoxic weathering. Mitigation of the environmental impact from mining waste (MiMi)". MiMi Print, Lulea, Sweden, (1999).
44. [44] Pokrovsky O.S., Golubev S.V., Schott J., "Dissolution kinetics of calcite, dolomite, and magnesite at 25 °C and 0 to 50 atm PCO2", Chemical Geology 217 (2005) 239-255. [DOI:10.1016/j.chemgeo.2004.12.012]
45. [45] Pokrovsky O.S., Golubev S.V., Schott J., Castillo A., "Calcite, dolomite and magnesite dissolution kinetics in aqueous solutions at acid to circumneutral pH, 25 to 150 °C and 1 to 55 atm PCO2: new constraints on CO2 sequestration in sedimentary basins", Chemical Geology 265 (2009) 20-32. [DOI:10.1016/j.chemgeo.2009.01.013]
46. [46] Kyle J.R., Ahn H., Gilg H.A., "Nature and origin of the nonsulfide zinc deposits in the Sierra Mojada District, Coahuila, Mexico: constraints from regional geology, petrography, and isotope analyses", Mineralium Deposita 53 (2018) 1095-1116. [DOI:10.1007/s00126-018-0797-1]
47. [47] Arfè G., Mondillo N., Boni M., Balassone G., Joachimski M., Mormone A., Di Palma T., "The Karst-Hosted mina grande nonsulfide zinc deposit, Bongara District (Amazonas Region, Peru)", Economic Geology 112 (2017) 1089-1110. [DOI:10.5382/econgeo.2017.4503]
48. [48] Arfè G., Mondillo N., Boni M., Joachimski M., Balassone G., Mormone A., Santoro L., Castro Medrano E., "The Cristal Zn prospect (Amazonas region, Northern Peru). Part II: an example of supergene enrichments in tropical areas", Ore Geology Reviews 95 (2018) 1076-1105. [DOI:10.1016/j.oregeorev.2017.11.022]
49. [49] Moore J.M., "Supergene mineral deposits and physiographic development in southwest Sardinia, Italy: Transactions institution mining and metallurgy" Section B: Applied Earth Science 71 (1972) B59-B66.
50. [50] Zeman J., "Supergene alteration of sulfides, II. A laboratory electrochemical study", Scripta Facultatis Scientiarum Naturalium Universitatis Purkynianae Brunensis, Geologia 15 (1985) 115-136.
51. [51] Faure G., "Principles and Applications of Geochemistry, 2nd edition", Prentice-Hall, New Jersey, (1998) 600 pp.
52. [52] Jeong G.Y., Lee B.Y., "Secondary mineralogy and microtextures of weathered sulfides and manganoan carbonates in mine wasterock dumps, with implications for heavy-metal fixation", American Mineralogist 88 (2003) 1933-1942. [DOI:10.2138/am-2003-11-1236]
53. [53] Yanful E.K., Orlandea M.P., "Controlling acid drainage in a pyritic mine waste rock. Part II-Geochemistry of drainage", Water, Air and Soil Pollution Journal 124 (2000) 259-283. [DOI:10.1023/A:1005266232379]
54. [54] Wilkins S.J., Compton R.G., Taylor M.A., Viles H.A., "Channel flow cell studies of the inhibiting action of gypsum on the dissolution kinetics of calcite: a laboratory approach with implications for field monitoring", Journal of Colloid and Interface Science 236 (2001) 354-361. [DOI:10.1006/jcis.2000.7418]
55. [55] Huminicki, D.M., "The effect of secondary precipitates on the dissolution rate of calcite in AMD solutions", Abstract, 9th Annual Geoscience Student Research Symposium (GSSRS), Blacksburg, Virginia, (2004).
56. [56] Dzombak D.A., Morel F.M.M., "Surface Complexation Modeling, Hydrous Ferric Oxide", John Wiley and Sons, New York, )1990) 416 pp.
57. [57] Martinez C.E., McBride M.B., "Cd, Cu, And Zn coprecipitates in Fe oxide formed at different pH: aging effects on metal solubility and extractability by citrate", Environmental Toxicology and Chemistry 20 (2001) 122-126. [DOI:10.1002/etc.5620200112]
58. [58] Trivedi P., Dyer J.A., Sparks D.L., "Lead sorption onto ferrihydrite. 1. A macroscopic and spectroscopic assessment", Environmental Science and Technology 37 (2003) 908-914. [DOI:10.1021/es0257927]
59. [59] Dyer J.A., Trivedi P., Scrivner N.C., Sparks D.L., "Lead sorption onto ferrihydrite. 2. Surface complexation modeling", Environmental Science and Technology 37 (2003) 915-922. [DOI:10.1021/es025794r]

ارسال نظر درباره این مقاله : نام کاربری یا پست الکترونیک شما:
CAPTCHA

ارسال پیام به نویسنده مسئول


بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.

کلیه حقوق این وب سایت متعلق به مجله بلورشناسی و کانی شناسی ایران می باشد.

طراحی و برنامه نویسی : یکتاوب افزار شرق

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb