دوره 28، شماره 4 - ( 10-1399 )                   جلد 28 شماره 4 صفحات 948-933 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- دانشگاه ارومیه
2- دانشگاه شهید باهنر کرمان
3- دانشگاه تبریز
چکیده:   (1401 مشاهده)
منطقه زمین­حسین در 170 کیلومتری جنوب­شرق شهر کرمان، کمربند فلززایی دهج – ساردوئیه در جنوب شرق ایران واقع است. اندرکنش سیال­های گرمابی با سنگ­های آتشفشانی ائوسن پیشین (به طور عمده آندزیت) در این منطقه با رخداد یک سامانه دگرسانی گسترده همراه بوده است. این سامانه دگرسانی گرمابی شامل پهنه­های دگرسانی آرژیلیک، فیلیک و پروپلیتیک است. با توجه به بررسی­های میکروسکوپی، کالکوپیریت، مگنتیت، پیریت، هماتیت، گوتیت، مالاکیت و آزوریت کانی­های مهم در رگه­ها و رگچه­های کانی سازی شده پهنه دگرسانی آرژیلیک محسوب می­شوند. نتایج کانی­شناسی نشان می­دهند که پهنه دگرسانی آرژیلیک دربردارنده کانی­هایی چون کوارتز، کائولینیت، مونت­موریلونیت، مسکوویت-ایلیت، جاروسیت، هماتیت، گوتیت، آلبیت، اورتوکلاز و کلسیت است. محاسبات تغییرات جرم عناصر جزئی با فرض Al به عنوان عنصر شاخص کم تحرک نشان می­دهند که فرایند تبدیل سنگ­های آندزیتی به پهنه دگرسانی آرژیلیک با غنی­شدگی عناصری چون U، Ba، Nb، Ga، Tl، Sr، Sc، Ta، Th و Mo و تهی­شدگی عناصری مانند Th، Co، Cs، Rb، V، Pb، Ni، Cu و Zn همراه بوده است. سایر عناصر جزئی مثل Hf، Y، Zr و عناصر خاکی نادر (REE) طی تشکیل پهنه دگرسانی آرژیلیک دستخوش هر دو فرایند شستشو و تثبیت شده­اند. الگوی توزیع REEها بهنجار شده به کندریت بیانگر جدایش و غنی­شدگی عناصر خاکی نادر سبک (LREE) نسبت به عناصر خاکی نادر سنگین (HREE) و رخداد بی­هنجاری منفی ضعیف Eu طی گسترش پهنه دگرسانی آرژیلیک هستند. نتایج به دست آمده از بررسی های کانی­شناسی، زمین­شیمی تغییرات جرم و بررسی ضرایب همبستگی بین عناصر آشکار می­کنند که رفتار عناصر جزئی طی تشکیل پهنه دگرسانی آرژیلیک در منطقه زمین­حسین تابعی از عواملی چون تغییرات دما و شیمی محلول­های مسئول دگرسانی، اختلاف در شدت دگرسانی، جذب سطحی توسط کانی­های رسی، روبش توسط اکسید­ها و هیدروکسیدهای فلزی، و تثبیت در فازهای کانیایی تازه تشکیل شده بوده است.      
متن کامل [PDF 2528 kb]   (369 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] Alavi M., "Regional stratigraphy of the Zagrosfold-thrust belt of Iran and its proforeland evolution" American Journal of Science 304 (2004) 1-20. [DOI:10.2475/ajs.304.1.1]
2. [2] Dimitrijevic M. D., Dimitrijevic M. N., Djordjevic M., Djokovic I., "Geological Survey of Iran", 1:100000 Series, Sheet 72 50, Anar (1971).
3. [3] Ghorbani M., "The economic geology in Iran: Mineral deposits and natural resources", Springer Science Business Media Dordrecht (2013) 1-581. [DOI:10.1007/978-94-007-5625-0_1]
4. [4] Salehi Tinooni M., Abedini A., Calagari A. A., "Investigation of mineralization, REE geochemistry, and fluid inclusions studies of the Shalang vein-type polymetallic ore deposit, southwest of Kerman", Iranian Journal of Crystallography and Mineralogy 27 (2019) 767-780. [DOI:10.29252/ijcm.27.4.767]
5. [5] Hosseini M. R., Ghaderi M., Alirezaei S., Sun W., "Geological characteristics and geochronology of the Takht-e-Gonbad copper deposit, SE Iran: A variant of porphyry type deposits", Ore Geology reviews 86 (2017) 440-458. [DOI:10.1016/j.oregeorev.2017.03.003]
6. [6] Dimitrijevic M. D., "1:100000 geological map of Chahar Gonbad", Geological Survey of Iran (1973).
7. [7] Ranjbar H., Shahriari H., "Comparison of ETM+ and ASTER data for hydrothermal alteration mapping in the central part of the Dehaj-Sarduyeh belt, Kerman Province", Iranian Journal of Crystallography and Mineralogy 14 (2006) 367-382.
8. [8] Stocklin J., "Structural history and tectonics of Iran: A review", Bulletin-American Association of Petroleum Geologists 52 (1985) 1258-1299.
9. [9] Whitney D. L., Evans B. W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
10. [10] Nesbitt H. W., "Mobility and fractionation of rare earth elements during weathering of a granodiorite", Nature 279 (1979) 206-210. [DOI:10.1038/279206a0]
11. [11] Nesbitt H. W., Markovics G., "Weathering of granodioritic crust, long-term storage of elements in weathering profiles, and petrogenesis of siliciclastic sediments", Geochimica et Cosmochimica Acta 61 (1997) 1653-1670. [DOI:10.1016/S0016-7037(97)00031-8]
12. [12] Gresens R. L., "Composition-volume relationships of metasomatism", Chemical Geology 2 (1967) 47-55. [DOI:10.1016/0009-2541(67)90004-6]
13. [13] Grant J. A., "The isocon diagram; a simple solution to Gresen's equation for metasomatic alteration ", Economic Geology 81 (1986) 1976-1982. [DOI:10.2113/gsecongeo.81.8.1976]
14. [14] Grant J. A., "Isocon analysis: A brief review of the method and applications", Physics and Chemistry of the Earh 30 (2005) 997-1004. [DOI:10.1016/j.pce.2004.11.003]
15. [15] MacLean W. H., Kranidiotis P., "Immobile elements as monitors of mass transport in hydrothermal alteration: Phelps Dodge massive sulfde deposit, Matagami", Economic Geology 82 (1987) 951-962. [DOI:10.2113/gsecongeo.82.4.951]
16. [16] MacLean W. H., "Mass change calculations in altered rock series", Mineralium Deposita 25 (1987) 44-49. [DOI:10.1007/BF03326382]
17. [17] Maanijou M., Rasa I., Lentz D., "Petrology, geochemistry, and stable isotope studies of the Chehelkureh Cu-Zn-Pb deposit, Zahedan, Iran", Economic Geology 107 (2012) 683-712. [DOI:10.2113/econgeo.107.4.683]
18. [18] Maanijou M., Lentz D. R., Alirezaei S., Rasa I., "Petrography and alteration of Chehelkureh copper deposit: Mass balance of elements and behavior of REE", Geosciences 67 (2008) 86-101.
19. [19] Abedini A., "Mineralogy and geochemistry of the Hizeh-Jan kaolin deposit, northwest of Vazaghan, East-Azarbaidjan province, NW Iran", Iranian Journal of Crystallography and Mineralogy 24 (2017) 647-660.
20. [20] Abedini A., "The mineralogical and geochemical control on distribution and mobilization of trace and rare earth elements during development of argillic alteration zone: A case study from northeast of Kharvana, NW Iran", Iranian Journal of Crystallography and Mineralogy 25 (2017) 353-366.
21. [21] Abedini A., Rezaei Azizi M., Dill H. G., "The tetrad effect in REE distribution patterns: A quantitative approach to genetic issues of argillic and propylitic alteration zones of epithermal Cu-PbFe deposits related to andesitic magmatism (Khan Kandi District, NW Iran", Journal of Geochemical Exploration 212 (2020) 1-16. [DOI:10.1016/j.gexplo.2020.106516]
22. [22] Abedini A., Calagari A. A., "Geochemical characteristics of the Arabshah kaolin deposit, Takab geothermal field, NW Iran", Arabian Journal of Geosciences 9 (2016) 1-16. [DOI:10.1007/s12517-016-2572-x]
23. [23] Kadir S., Erkoyun H., "Genesis of the hydrothermal karacayir kaolinite deposit in Miocene volcanics and Palaeozoic metamorphic rocks of the Usak-Gure Basin, western Turkey" Turkish Journal of Erath Science 22 (2013) 444-468.
24. [24] Jiang N., Sun S., Chu X., Mizuta T., Ishiyama D., "Mobilization and enrichment of high-field
25. strength elements during late- and post-magmatic processes in the Shuiquangou syenitic complex,
26. Northern China", Chemical Geology 200 (2003) 117-128. [DOI:10.1016/S0009-2541(03)00162-1]
27. [25] Fulignati P., Gioncada A., Sbrana A., "Rareearth element (REE) behaviour in the alteration facies of the active magmatic-hydrothermal system of Vulcano (Aeolian Islands, Italy)", Journal of
28. Volcanology and Geothermal Research 88 (1999) 325-342. [DOI:10.1016/S0377-0273(98)00117-6]
29. [26] Salvi S., Williams-Jones, A. E., "The role of hydrothermal processes in concentrating high-field
30. strength elements in the strange Lake peralkaline complex, northeastern Canada", Geochimica et
31. Cosmochimica Acta 60 (1996) 1917-1932.
32. [27] Ndjigui P. D., Bilong P., Bitom D., Dia A., "Mobilization and redistribution of major and
33. trace elements in two weathering profiles developed on serpentinites in the Lomié ultramafic
34. complex, South-East Cameroon", Journal of African Earth Sciences 50 (2008) 305-328. [DOI:10.1016/j.jafrearsci.2007.10.006]
35. [28] Kadir S., Akbulut A., "Mineralogy, geochemistry and genesis of the Taşoluk kaolinite deposits in pre-Early Cambrian metamorphites and Neogene volcanites of Afyonkarahisar, Turkey", Clay Minerals 44 (2011) 89-112. [DOI:10.1180/claymin.2009.044.1.89]
36. [29] Feng J., "Trace elements in ferromanganese concretions, gibbsite spots, and the surrounding
37. terra rossa overlying dolomite: Their mobilization, redistribution and fractionation", Journal of
38. Geochemical Exploration 108 (2011) 99-111. [DOI:10.1016/j.gexplo.2010.10.010]
39. [30] Patino L. C., Velbel M. A., Price J. R., Wade, J. A., "Trace element mobility during spheroidal
40. weathering of basalts and andesites in Hawaii and Guatemala", Chemical Geology 202 (2003) 343- [DOI:10.1016/j.chemgeo.2003.01.002]
42. [31] Höhn S., Frimmel H. E., Pašava J., "The rare earth element potential of kaolin deposits in the
43. Bohemian Massif (Czech Republic, Austria)", Mineralium Deposita 49 (2014) 967-986. [DOI:10.1007/s00126-014-0542-3]
44. [32] Taylor Y, McLennan S. M., "The continental crust: Its composition and evolution", 1st ed. Oxford, UK: Blackwell (1985).
45. [33] Kadir S., Kulah T., Eran M., Önagil N., Gurel A., "Minerlogical and geochemical characteristics and genesis of the Gözelyurt alunite-bearing kaolinite deposit within the late Miocene Gördeles ignimbrite, central Anatolia, Turkey ", Clays and Clay Minerals 62 (2014) 477-499. [DOI:10.1346/CCMN.2014.0620603]
46. [34] Mongelli G., "REE and other trace elements in a granitic weathering profile from ''Serre'', southern Italy", Chem Geol 103 (1993) 17-25. [DOI:10.1016/0009-2541(93)90288-T]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.