Volume 28, Issue 4 (12-2020)                   www.ijcm.ir 2020, 28(4): 883-894 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Moradi Navokh, Malekzadeh Shafaroudi, Javidi Moghaddam. Geology, mineralization, geochemistry and fluid inclusion studies of Mashkan copper prospect area, northeastern Sabzevar. www.ijcm.ir 2020; 28 (4) :883-894
URL: http://ijcm.ir/article-1-1555-en.html
Abstract:   (1244 Views)
Mashkan copper prospect area is located in northeastern Sabzevar and southern Ghochan-Sabzevar magmatic belt. Geology of the area includes Eocene volcanic unit (hornblende andesite) and sedimentary units (conglomerate, sandstone, limestone, shale and sandy limestone). Copper mineralization, as vein-type, mostly occurs with northeast-southwest trend in sedimentary units. Primary minerals include quartz, barite, pyrite, chalcocite, and bornite, which are oxidized to malachite, azurite, chalcocite, covellite, goethite, and hematite. Maximum geochemical anomalies in veins are 4.6% Cu (with an average of 2.1%), 100 ppm As (with an average 55.1 ppm), and 65 Sb ppm (with average 28.6 ppm). On the basis of fluid inclusion studies of quartz and barite, minimum formation temperature for mineralization is 170 to 240ºC with salinity of 10.7 to 13.51 NaCl wt. % equivalent. Decreasing temperature and dilution by meteoric water can be the most important factors for sulfide deposition. Structural control of mineralization, limited alteration to vein margin, low temperature and salinity of fluid inclusions and simple mineralogy are similar to epithermal-type deposit.
Full-Text [PDF 3105 kb]   (452 Downloads)    
Type of Study: Research | Subject: Special

References
1. [1] Alavi M., "Sedimentary and structural characteristics of the Paleo-Tethys remnants in northeastern Iran", Geological Society of American Bullitan 103 (1991) 983-992. https://doi.org/10.1130/0016-7606(1991)103<0983:SASCOT>2.3.CO;2 [DOI:10.1130/0016-7606(1991)1032.3.CO;2]
2. [2] Spies O., Lensch G., Mihem A., and "Chemistry of the post-ophiolithic tertiary volcanic between Sabzevar and Quchan, NE Iran (in Persian)", in Almassi A. (eds.), Geodynamic project (geotraverse) in Iran. Geological Survey of Iran, Tehran, (1983) 247-266.
3. [3] Karimpur M.H., Malekzadeh Shafaroudi A., Esfandiarpour A., Mohammadnejad H., "Nyshabour Turquoise mine: The first Cu-Au-ULREE IOCG type in Iran (in Persian)", Iranian Journal of Economic Geology 3 (2012) 193-216.
4. [4] Gholami S., "Geology, mineralization, geochemistry, and magnetometry of Shotor Sang iron deposit, NE Sabzevar", Ms.C thesis, Ferdowsi University of Mashhad, Mashhad (2009) 240p.
5. [5] Panahi M., "Geology, petrography, alteration and geochemistry in eastern part of Hamdi kaolin of Halak Abad (southwestern Sabzevar) with view of copper porphyry exploration, and study of mineralization, geochemistry and magnetometry in eastern of Abozar iron mine, Neyshabour (northeastern of Sabzevar)", Ms.C thesis, Ferdowsi University of Mashhad, Mashhad (2009) 411p.
6. [6] Eshbak P., Malekzadeh Shafaroudi A., Karimpour M.H., "Study of Au±Cu mineralization of Jalambadan area (NW Sabzavar) based on mineralogy of alteration and mineralization zones, and geochemistry (in Persian)", Journal of Crystallography and Mineralogy 1 (2018) 31-46. [DOI:10.29252/ijcm.26.1.31]
7. [7] Zaree A., Malekzadeh Shafaroudi A., Karimpour M.H., "Khanlogh magnetite-apetite deposit, NW Neyshabour: Mineralogy, structure and texture, alteration, and determination of model (in Persian)", Iranaian Journal of Crystallography and Mineralogy 1 (24) (2016) 131-144.
8. [8] Steele-MacInnis M., Lecumberri-Sanchez P., Bodnar R.J., "HOKIEFLINCS-H2O-NACL: A Microsoft Excel spreadsheet for interpreting microthermometric data from fluid inclusions based on the PVTX properties of H2O-NaCl", Computer in Geosciences 49 (2012) 334-337. [DOI:10.1016/j.cageo.2012.01.022]
9. [9] Lecumberri-Sanchez P., Steel-MacInnis, M., Bodnar, R.J., "A numerical model to estimate trapping conditions of fluid inclusions that homogenize by halite disappearance", Geochimica et Cosmochimica Acta 92 (2012) 14-22. [DOI:10.1016/j.gca.2012.05.044]
10. [10] Amini B., "Geological map of Mashkan". Scale 1:100,000. Geological Survey of Iran, (2006).
11. [11] Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95 (2010) 185-187. [DOI:10.2138/am.2010.3371]
12. [12] Ossandón G., Fréraut R., Gustafson L.B., Lindsay D.D., "Zentilli M., Geology of the Chuquicamata Mine: A progress report", Economic Geology 96 (2001) 351-366. [DOI:10.2113/gsecongeo.96.2.351]
13. [13] Ramdohr P., "The ore minerals and their intergrowths", 2nd edition. Pergamon, Oxford, 1980, 1207p.
14. [14] Barnes H. L., "Geochemistry of hydrothermal ore deposits", Third edition, New York, John Wiley and Sons, (1997) 797pp.
15. [15] Rollinson H., "Using geochemical data: evaluation, presentation, interpretation", Longman Scientific & Technical, Essex, UK, (1993) 352 p.
16. [16] Roedder E., "Fluid Inclusions", In: Ribbe PE (ed) Reviews in Mineralogy, 12, Mineral Soci Am, Washington DC, (1984) 1-644. [DOI:10.1515/9781501508271]
17. [17] Shephered T. J., Rankin A. H., Alderton D. H. M., "A practical guide to fluid inclusion studies", Blackie, London (1985).
18. [18] Seward T.M., "The hydrothermal geochemistry of gold", in: Foster, R. P. (ed.), gold metallogeny and exploration, Blakie and Sons Ltd. (1991) 432 p. [DOI:10.1007/978-1-4613-0497-5_2]
19. [19] Robb L. J., "Introduction to ore-forming processes", Blackwell science, Victoria (2005) 373p.
20. [20] Foster R. P., "Gold Metallogeny and Exploration", Department of Geology University of Southampton (1996) 432p.
21. [21] Pirajno F., "Hydrothermal processes and mineral systems", springer sicence, perth, (2009) 203p. [DOI:10.1007/978-1-4020-8613-7]
22. [22] Sillitoe R. H., "Epithermal models: Genetic types, geometrical control and shallow features", Geological Association of Canada Special paper 40 (1993) 403 - 417.
23. [23] Camprubi A., Albinson T., "Epithermal deposites in Mexico, Update of current knowledge and an empirical reclassification", The Geologcal Society of America 422 (2007) 14-39. [DOI:10.1130/2007.2422(14)]
24. [24] Javidi Moghaddam M., Karimpour M.H., Ebrahimi Nasrabadi K., Haidarian Shahri M.R., Malekzadeh Shafaroudi A., "Mineralogy, geochemistry, fluid inclusion and oxygen isotope investigations of epithermal Cu ± Ag veins of the Khur Area, Lut Block, Eastern Iran", Acta Geologica Sinica 92 (2018) 1139-1156. [DOI:10.1111/1755-6724.13596]
25. [25] Boroozinyat B., Malekzadeh A., Haidarian Shahri M.R., "Mineralogy, geochemistry, and fluid inclusion studies in Zaveh copper mineralization occurrence, southeast of Torbat-e-Hydarieh (in Persian)", Iranaian Journal of Crystallography and Mineralogy 24 (2016) 131-144.
26. [26] Maanijou, M., Rasa, I., and Lentz, D., "Petrology, Geochemistry, and Stable Isotope Studies of the Chehelkureh Cu-Zn-Pb deposit, Zahedan", Economic Geology 107 (2012) 683-712. [DOI:10.2113/econgeo.107.4.683]
27. [27] Maanijou M., Geochemistry, "origin of ore fluids, and formation of Chehelkureh copper deposit (NW of Zahedan)". Ph. D. Thesis, Shahid Beheshti University, Tehran (2007) 236p.
28. [28] Beane R.E., "The Magmatic-Meteoric Transition. Geothermal Resources Council", Special Report 13 (1983) 245-253.

Add your comments about this article : Your username or Email:
CAPTCHA

Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2024 CC BY-NC 4.0 | Iranian Journal of Crystallography and Mineralogy

Designed & Developed by : Yektaweb