دوره 28، شماره 3 - ( 7-1399 )                   جلد 28 شماره 3 صفحات 710-697 | برگشت به فهرست نسخه ها


XML English Abstract Print


دانشگاه بین المللی امام خمینی (ره)
چکیده:   (1683 مشاهده)
کانسار روی- سرب مهدی‌آباد در شرق شهرستان مهریز، کانساری با میزبان کربناتی است که در دولومیت‌های سازند تفت جای دارد. این کانسار از بخش‌های اکسیدی-کربناتی و سولفیدی تشکیل شده است. برای بارزسازی پهنه­های مختلف کانه‌زایی و دگرسانی‌های همراه، روش‌های مختلف پردازشی بر تصاویر چندطیفی استر و لندست 8-OLI اعمال شد. در بارزسازی پهنه­های کانه‌زایی و دگرسانی‌های همراه در تصاویر OLI، روش‌های تحلیل مولفه‌های اصلی، تحلیل مولفه‌های مستقل و ترکیب‌های بندی بر پایه نسبت‌های نواری عملکرد خوبی دارند. در تصاویر استر، بهترین نتایج از روش‌های تحلیل مولفه‌های اصلی و جداسازی طیفی خطی به دست آمد. بر پایه نتایج به دست آمده، در مناطقی که پهنه گوسان و دگرسانی سیدریتی هم‌پوشی دارند، کانه‌زایی روی- سرب صورت گرفته است. درستی نتایج این پردازش‌های طیفی با بررسی های میدانی و نتایج پراش پرتو ایکس نمونه‌ها تایید شد.     
متن کامل [PDF 8663 kb]   (535 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] Rowan L. C., Wetlaufer P. H., Goetz A. F. H., Stewart J. H., "Discrimination of rock types and detection of hydrothermally altered areas in south-central Nevada by the use of computer-enhanced ERTS images," 1976.
2. [2] Rowan L. C., Goetz A. F., Ashley R. P., "Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images," Geophysics, vol. 42, no. 3, pp. 522-535, 1977. [DOI:10.1190/1.1440723]
3. [3] Abrams M. J., Brown D., Lepley L., Sadowski R., "Remote sensing for porphyry copper deposits in southern Arizona," Econ. Geol., vol. 78, no. 4, pp. 591-604, 1983. [DOI:10.2113/gsecongeo.78.4.591]
4. [4] Hunt G. R., "Spectral signatures of particulate minerals in the visible and near infrared," Geophysics, vol. 42, no. 3, pp. 501-513, 1977. [DOI:10.1190/1.1440721]
5. [5] Crosta A. P., Souza Filho C. R. De, Azevedo F., Brodie C., "Targeting key alteration minerals in epithermal deposits in Patagonia, Argentina, using ASTERASTER imagery and principal component analysis," Int. J. Remote Sens., vol. 24, no. 21, pp. 4233-4240, 2003. [DOI:10.1080/0143116031000152291]
6. [6] Di Tommaso I., Rubinstein N., "Hydrothermal alteration mapping using ASTER data in the Infiernillo porphyry deposit, Argentina," Ore Geol. Rev., vol. 32, no. 1-2, pp. 275-290, 2007. [DOI:10.1016/j.oregeorev.2006.05.004]
7. [7] Adiri Z., El Harti A., Jellouli A., Maacha L., Bachaoui E. M., "Lithological mapping using Landsat 8 OLI and Terra ASTER multispectral data in the Bas Drâa inlier, Moroccan Anti Atlas," J. Appl. Remote Sens., vol. 10, no. 1, p. 016005, 2016. [DOI:10.1117/1.JRS.10.016005]
8. [8] Ranjbar H., Shahriari H., "Comparison of ETM+ and ASTER data for hydrothermal alteration mapping in the central part of the Dehaj-Sarduyeh belt, Kerman Province.," Iran. J. Crystallogr. Mineral., vol. 14, no. 2, pp. 367-382, Oct. 2006.
9. [9] Mohammadzadeh M. J., Falahat R., "Application of ET~ image in detecting alteration halos and discriminating lithological units in Mianeh (eastAzarbayjan)," Iran. J. Crystallogr. Mineral., vol. 15, no. 2, pp. 439-452, Oct. 2007.
10. [10] Hassan S. M., Ramadan T. M., "Mapping of the late Neoproterozoic Basement rocks and detection of the gold-bearing alteration zones at Abu Marawat-Semna area, EASTERn Desert, Egypt using remote sensing data," Arab. J. Geosci., vol. 8, no. 7, pp. 4641-4656, 2015. [DOI:10.1007/s12517-014-1562-0]
11. [11] Yang M., Zhang Z., Yao A., Zhou M., Ren G., "Application of remotely sensed data in detecting zinc-lead bearing mineralized zones in Westkunlun Huoshaoyun area," in Journal of Physics: Conference Series, 2018, vol. 1053, p. 012107. [DOI:10.1088/1742-6596/1053/1/012107]
12. [12] Markham B. L. et al., "Landsat data continuity mission calibration and validation," 2008.
13. [13] Beiranvand Pour A., Hashim M., "Hydrothermal alteration mapping from Landsat-8 data, Sar Cheshmeh copper mining district, south-eASTERn Islamic Republic of Iran," J. Taibah Univ. Sci., vol. 9, no. 2, pp. 155-166, 2015. [DOI:10.1016/j.jtusci.2014.11.008]
14. [14] Pournamdari M., Hashim M., "Detection of chromite bearing mineralized zones in Abdasht ophiolite complex using ASTER and ETM+ remote sensing data," Arab. J. Geosci., vol. 7, no. 5, pp. 1973-1983, 2014. [DOI:10.1007/s12517-013-0927-0]
15. [15] Maghfouri S., Hosseinzadeh M. R., Rajabi A., Choulet F., "A review of major non-sulfide zinc deposits in Iran," Geosci. Front., vol. 9, no. 1, pp. 249-272, 2018, doi: https://doi.org/10.1016/j.gsf.2017.04.003 [DOI:10.1016/j.gsf.2017.04.003.]
16. [16] Ghasemi M., Momenzadeh M., Yaghubpur A., Mirshokraei A. A., "Mineralogy Studies of Mehdiabad Zinc-Lead Deposit- Yazd, Central Iran," J. Geosci., vol. 19, no. 73, pp. 89-98, 2010, doi: 10.22071/gsj.2010.57204.
17. [17] Ghasemi M., Mohammadzadeh M., Yaghubpur A., Mirshokraei A. A., "Mineralogy and Textural Studies of Mehdiabad Zinc-Lead Deposit- Yazd, Central Iran.," Iran. J. Crystallogr. Mineral., vol. 16, no. 3, pp. 389-404, Oct. 2008.
18. [18] Morshedy A. H., Mojtahedzadeh S. H., Kouhsari A. H., "Geometrical modeling of fluid inclusion to predict the microthermometric properties: a case study at the Mehdiabad Pb-Zn deposit," J. Econ. Geol., vol. 11, no. 1, 2019.
19. [19] Reichert J., Borg J., Rashidi B., "mineralogy of Non - sulphied ore from the mehdi abad zinc - lead deposit, centeral. iran.," Iran. J. Crystallogr. Mineral., vol. 11, no. 2, pp. 209-217, Oct. 2003.
20. [20] Nabavi M. H., "Yazd 1:250, 000 quadrangle geological map: Geological Survey of Iran," Geological Survey of Iran, 1975.
21. [21] Amini B., "Bafq 1:100, 000 quadrangle geological map," Geological Survey of Iran, 2001.
22. [22] Jalali A., Gharib F., "Fahraj 1:100,000 quadrangle geological map," Geological Survey of Iran, 2004.
23. [23] Majidifard M. R., Vaziri S. H., "Bahadoran 1:100,000 quadrangle geological map," Geological Survey of Iran, 2000.
24. [24] Alavipanah S., K., Modern Remote Sensing Interpretation of Satellite Images and Aerial Photographs. University of Tehran Publication, 2009.
25. [25] Mahmoudishadi S., Malian A., Hosseinali F., "COMPARING INDEPENDENT COMPONENT ANALYSIS WITH PRINCIPLE COMPONENT ANALYSIS IN DETECTING ALTERATIONS OF PORPHYRY COPPER DEPOSIT (CASE STUDY: ARDESTAN AREA, CENTRAL IRAN).," Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci., vol. 42, 2017. [DOI:10.5194/isprs-archives-XLII-4-W4-161-2017]
26. [26] Kumar C., Shetty A., Raval S., Sharma R., Ray P. C., "Lithological discrimination and mapping using ASTER SWIR Data in the Udaipur area of Rajasthan, India," Procedia Earth Planet. Sci., vol. 11, pp. 180-188, 2015. [DOI:10.1016/j.proeps.2015.06.022]
27. [27] Hasanlou M., Samadzadegan F., "Comparative study of intrinsic dimensionality estimation and dimension reduction techniques on hyperspectral images using K-NN classifier," IEEE Geosci. Remote Sens. Lett., vol. 9, no. 6, pp. 1046-1050, 2012. [DOI:10.1109/LGRS.2012.2189547]
28. [28] Luo G., Chen G., Tian L., Qin K., Qian S.-E., "Minimum noise fraction versus principal component analysis as a preprocessing step for hyperspectral imagery denoising," Can. J. Remote Sens., vol. 42, no. 2, pp. 106-116, 2016. [DOI:10.1080/07038992.2016.1160772]
29. [29] Green A. A., Berman M., Switzer P., Craig M., "A transformation for ordering multispectral data in terms of image quality with implications for noise removal," IEEE Trans. Geosci. Remote Sens., vol. 26, no. 1, pp. 65-74, 1988. [DOI:10.1109/36.3001]
30. [30] Boardman J. W., "Leveraging the high dimensionality of AVIRIS data for improved sub-pixel target unmixing and rejection of false positives: mixture tuned matched filtering," in Summaries of the seventh JPL Airborne Geoscience Workshop, JPL Publication, 1998, 1998, vol. 97, pp. 55-56.
31. [31] Atkinson P. M., Cutler M. E. J., Lewis H., "Mapping sub-pixel proportional land cover with AVHRR imagery," Int. J. Remote Sens., vol. 18, no. 4, pp. 917-935, 1997. [DOI:10.1080/014311697218836]
32. [32] Wu C., Murray A. T., "Estimating impervious surface distribution by spectral mixture analysis," Remote Sens. Environ., vol. 84, no. 4, pp. 493-505, 2003. [DOI:10.1016/S0034-4257(02)00136-0]
33. [33] Akbari Z., Rasa I., Mohajel M., Adabi M. H., Y. A, "Hydrothermal Alteration of Ahangaran Deposits, West of IranUsing ASTER Spectral Analysis," Int. Geoinformatics Res. Dev., 2015.
34. [34] Janati M., Niroomand Jadidi M., Valadanzoj M. J., Mohammadzadeh A., "Extraction of pure pixels using feature-based space Physical Parameters to Estimate Surface Coverage Subpixel," J. Spat. Plan., vol. 12, no. 17, pp. 1-20, 2013.
35. [35] Fisher P., "The pixel: a snare and a delusion," Int. J. Remote Sens., vol. 18, no. 3, pp. 679-685, 1997. [DOI:10.1080/014311697219015]
36. [36] Cracknell A. P., "Review article synergy in remote sensing-what's in a pixel?," Int. J. Remote Sens., vol. 19, no. 11, pp. 2025-2047, 1998. [DOI:10.1080/014311698214848]
37. [37] Foody G. M., "Sub-pixel methods in remote sensing," in Remote sensing image analysis: Including the spatial domain, Springer, 2004, pp. 37-49. [DOI:10.1007/978-1-4020-2560-0_3]
38. [38] Entezari Harsini A., Mazaheri S. A., Saadat S., "Petrography, mineralogy, alteration zones and geochemical exploration in Golcheshmeh Area, East of Iran.," Iran. J. Crystallogr. Mineral., vol. 23, no. 4, pp. 639-650, Jan. 2016.
39. [39] Beiranvand Pour A., et al., "Application of Multi-Sensor Satellite Data for Exploration of Zn-Pb Sulfide Mineralization in the Franklinian Basin, North Greenland," Remote Sens., vol. 10, no. 8, p. 1186, Aug. 2018, doi: 10.3390/rs10081186. [DOI:10.3390/rs10081186]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.