دوره 28، شماره 1 - ( 1-1399 )                   جلد 28 شماره 1 صفحات 70-51 | برگشت به فهرست نسخه ها


XML English Abstract Print


1- دانشگاه بوعلی‌سینا
2- موسسه علوم زمین اسلواکی
چکیده:   (2374 مشاهده)
کانسار آهن± آپاتیت لکه­سیاه در ایالت فلززایی بافق- ساغند (ایران مرکزی) و در سنگ­های میزبان ریولیتی قرار گرفته است. کانی­های اصلی در این کانسار مگنتیت و آپاتیت هستند که کانی­های مونازیت و زنوتیم به صورت میانبار درون بلور و شکستگی­های این دو کانی تشکیل شده­اند. کانی­ها با استفاده از روش­های میکروسکوپی و تجزیه ریزکاوالکترونی بررسی شدند. نتایج نشان می­دهد که بلور آپاتیت اولیه بوده و احتمالاً از ماگمای نخستین با ماهیت مافیک تا فرامافیک نهشته شده است. بلورهای آپاتیت دارای منطقه­بندی نامنظم از فازهای تیره و روشن هستند، به­طوری که بخش­های تیره آپاتیت غنی از میانبارهای مونازیت و زنوتیم ثانویه است. این نتایج با فرآیند انحلال- ته­نشینی مجدد سازگار است. طی این فرآیند، بلورهای آپاتیت با سیال­های گرمابی تأخیری که در راستای مرزهای بلوری در حال مهاجرت بوده­اند واکنش داده­ و تهی از عناصر خاکی نادر (REE) شده­اند. همچنین عناصر خاکی نادر دستخوش جدایش ترجیحی شده­اند، به طوری که اغلب عناصر خاکی نادر سبک (LREE) در مونازیت و عناصر نادر سنگین (HREE) در زنوتیم غنی شده­اند.    
متن کامل [PDF 3612 kb]   (592 دریافت)    
نوع مقاله: پژوهشي | موضوع مقاله: تخصصي

فهرست منابع
1. [1] Barton M.D., " Iron oxide (-Cu-Au-REE-P-Ag-U-Co) systems", Elsevier Inc, 13(2014) 515-541. [DOI:10.1016/B978-0-08-095975-7.01123-2]
2. [2] De Melo G.H.C., Monteiro L.V.S., Xavier R.P., Moreto C.P.N., Santiago E. S. B., Dufrane S.A., Aires B., Santos A.F.F., "Temporal evolution of the giant Salobo IOCG deposit, Carajás Province (Brazil): constraints from paragenesis of hydrothermal alteration and U-Pb geochronology", Mineralium Deposita 52 (2017) 709-732. [DOI:10.1007/s00126-016-0693-5]
3. [3] Westhues A., Hanchar J.M., LeMessurier M., Whitehouse M.J., 2017., "Evidence for hydrothermal alteration and source regions for the Kiruna iron oxide-apatite ore (northern Sweden) from zircon Hf and O isotopes", Geology 45 (2017) 571-574. [DOI:10.1130/G38894.1]
4. [4] Childress T.M., Simon A.C., Day W.C., Lundstrom C.C., Bindeman I.N., " Iron and oxygen isotope signatures of the Pea Ridge and Pilot Knob magnetite-apatite deposits, Southeast Missouri, USA", Economic Geology111(2016) 2033-2044. [DOI:10.2113/econgeo.111.8.2033]
5. [5] Naranjo J.A., Henríquez F., Nyström J. O., "Subvolcanic contact metasomatism at El Laco Volcanic complex, Central Andes", Andean Geology 37 (2010) 110-120. [DOI:10.4067/S0718-71062010000100005]
6. [6] Williams-Jones A.E., Heinrich C.A., "Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits", Economic Geology 100 (2005) 1287-1312. [DOI:10.2113/gsecongeo.100.7.1287]
7. [7] Boyce J.W., Hervig R.L., "Apatite as a Monitor of Late-Stage Magmatic Processes at Volcán Irazú, Costa Rica", Contrib, Mineralogy and Petrology, 157 (2009)135-145. [DOI:10.1007/s00410-008-0325-x]
8. [8] Harlov D.E. ,Forster H.J., "Fluid-induced nucleation of (YþREE)-phosphate minerals within fluorapatite. Nature and experiment. Part II. Fluorapatite", American Mineralogist 88 (2003) 1209-1229. [DOI:10.2138/am-2003-8-905]
9. [9] Forster H., Jafarzadeh A., "The Bafq mining district in Central Iran- a Highly Mineralized Infracambrian Volcanic Field", Economic geology 89 (1994) 1697-1721. [DOI:10.2113/gsecongeo.89.8.1697]
10. [10] Samani B., " Metallogeny of the Precambrian in Iran ", Precambrian Reserch 39 (1988) 85-106. [DOI:10.1016/0301-9268(88)90053-8]
11. [11] Mokhtari M.A.A., "Posht-e-Badam metallogenic block (central Iran): A suitable zone for REE mineralization", Central Europian Geology 58 (2015) 199-216. [DOI:10.1556/24.58.2015.3.1]
12. [12] Alavi M., "Tectonic map of the Middle East (scale 1:5,000,000)", Geological Survey of Iran (1991).
13. [13] Ramezani J., Tucker R.D., "The Saghand region, central Iran: U-Pb geochronology, petrogenesis andimplications for Gondwana tectonics", American Journal of Sciences 303 (2003) 622-665. [DOI:10.2475/ajs.303.7.622]
14. [14] Masoodi M., Yassaghi A., Nogol-Sadat M.A.A., Neubauer F., Bernroider M., Friedl G., Genser J., Houshmandzadeh, A., "Cimmerian evolution of the Central Iranian basement: evidence from metamorphic units of the Kashmar-Kerman Tectonic Zone", Tectonophysics 588 (2013) 189-208. [DOI:10.1016/j.tecto.2012.12.012]
15. [15] Daliran F., " Kiruna-type iron oxide-apatite ores and 'apatites' of the Bafq district, Iran, with an emphasis on the REE geochemistry of their apatites. In: Porter, T.M. (Ed.), Hydrothermal Iron Oxide Copper Gold and Related Deposits: A Global Perspective" 2. PGC Publishing, Adelaide, Australia, (2002) 303-320.
16. [16] "Geological map of Ali Abad, 1:25000", Parskani Co, 2014 (in Persian).
17. [17] Jami M., "Geology, geochemistry and evolution of the Esfordi phosphate-iron deposit, Bafq area, central Iran",Unpublished PhD thesis, The university of New South Wales, Australia (2005).
18. [18] Mokhtari M.A.A., "Posht-e-Badam metalogenic block (central Iran): A suitable zone for REE mineralization", Journal of central European geology 58 (2016) 199-216. [DOI:10.1556/24.58.2015.3.1]
19. [19] Dupuis C., Beaudoin G., "Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types", Mineral Deposita 46 (2011) 319-335. [DOI:10.1007/s00126-011-0334-y]
20. [20] Nadoll P, Mauk J.L, Hayes T.S, Koenig A.E, Box S.E ., "Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the Mesoproterozoic Belt supergroup, United States", Economic Geology 107 (2012) 1275-1292. [DOI:10.2113/econgeo.107.6.1275]
21. [21]Whitney D.L., Evans B.W., "Abbreviations for names of rock-forming minerals", American Mineralogist 95(2010): 185-187. [DOI:10.2138/am.2010.3371]
22. [22] Bell A. S., Simon A.,"Experimental evidence for the alteration of the Fe3+/ Fe of silicate melt caused by the degassing of chlorine-bearing aqueous volatiles", Geology 39(2011) 499-502. [DOI:10.1130/G31828.1]
23. [23] Dilles J. H., Kent A. J., Wooden J. L., Tosdal R. M., Koleszar A., Lee R. G., Farmer L. P., "Zircon compositional evidence for sulfur-degassing from ore-forming arc magmas", Economic Geology 110 (2015) 241-251. [DOI:10.2113/econgeo.110.1.241]
24. [24] Hou T., Zhang Z., Kusky, T., "Gushan magnetite-apatite deposit in the Ningwu basin, Lower Yangtze River Valley, SE China: Hydrothermal or Kiruna-type?" Ore Geolology Review, 43 (2011), 333-346. [DOI:10.1016/j.oregeorev.2011.09.014]
25. [25] Belousova, E., Griffin,W., O'Reilly., S.Y., Fisher N., "Apatite as an indicator mineral for mineral exploration: Trace-element compositions and their relationship to host rock type", Journal of Geochemical Exploration 76 (2002) 45-69. [DOI:10.1016/S0375-6742(02)00204-2]
26. [26] Schandl E.S., Gorton M.P., "A textural and geochemical guide to the identification of hydrothermal monazite: Criteria for selection of samples for dating epigenetic hydrothermal ore deposits", Economic Geology 99 (2004) 1027-1035. [DOI:10.2113/gsecongeo.99.5.1027]
27. [27] Rappaz M, Abraham MM, Ramey JO and Boatner LA., "EPR spectroscopic characterization of Gd in the monazite-type REE orthophosphates: LaPO4, CePO4, PrPO4, NdPO4, SmPO4 and EuPO4", Physical Review Journals, 23 (1981) 1012-30. [DOI:10.1103/PhysRevB.23.1012]
28. [28] Spear S. F., Pyle J .M., "Apatite, Monazite, and Xenotime in Metamorphic Rocks", Mineralogy and Geochemistry (2002) 1-63. [DOI:10.2138/rmg.2002.48.7]
29. [29] Boynton W.V., "Geochemistry of Rare Earth Elements: Meteorite Studies. In: Henderson, P., Ed., Rare Earth Element Geochemistry", Elsevier, New York, (1984) 63-114. [DOI:10.1016/B978-0-444-42148-7.50008-3]
30. [30] Tornos F., Velasco F., Hanchar J.M., Astrobiología C.D., Torrejón C.C., Ardoz T.D., "Iron-rich melts, magmatic magnetite, and superheated hydrothermal systems: The El Laco deposit, Chile", Geology 44 (2016) 427-430. [DOI:10.1130/G37705.1]
31. [31] Naslund H.R., Dobbs F.M., Henriquz F.J., Nystrom J.O., "Evidence for iron-oxide magmas at El Laco, Chile", Geological Society of America Abstracts with Programs 30 (1998) 91.
32. [32] Dare S.A.S., Barnes S., Beaudoin,G., "Did the massive magnetite "lava flows" of El Laco (Chile) form by magmatic or hydrothermal processes? New constraints from magnetite composition by LA-ICP-MS", Mineralium Deposita, 50 (2015) 607-617. [DOI:10.1007/s00126-014-0560-1]
33. [33] Knipping J.L., Bilenker L.D., Simon A.C., Reich,M., Barra F., Deditius A.P., Lundstrom C., Bindeman I., Munizaga R., "Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions", Geology 43 (2015) 591-594. [DOI:10.1130/G36650.1]
34. [34] Foley N.K., Ayuso R.A., "Rare earth element mobility in high-alumina altered metavolcanic deposits, South Carolina, USA", Journal of Geochemical Exploration 133 (2013) 50-67. [DOI:10.1016/j.gexplo.2013.03.008]
35. [35] Cole C.S., James R.H., Connelly D.P., Hathorne E.C., " Rare earth elements as indicators of hydrothermal processes within the East Scotia subduction zone system", Geochimica et Cosmochimica Acta 140 (2014) 20-38. [DOI:10.1016/j.gca.2014.05.018]
36. [36] Yao T., Li H. M., Li W. J., Li L. X., Zhao C., "Origin of the disseminated magnetite pyroxenite in the Tieshanmiao-type iron deposits in the Wuyang region of Henan Province, China", Journal of Asian Earth Sciences 113 (2015) 1235-1252. [DOI:10.1016/j.jseaes.2015.03.050]
37. [37] Brueckner S.M., Piercey S.J., Pilote J. L., Layne G.D., Sylvester P.J., "Mineralogy and mineral chemistry of the metamorphosed and precious metal-bearing Ming deposit, Canada", Ore Geology Reviews 72 (2016) 914-939. [DOI:10.1016/j.oregeorev.2015.09.016]
38. [38] Webster J.D., Piccoli P.M., "Magmatic apatite: a powerful, yet deceptive mineral", Elements 11(2015) 177-182. [DOI:10.2113/gselements.11.3.177]
39. [39] Harlov D.E., "Apatite: A fingerprint for metasomatic processes", Elements 11(2015) 171-176. [DOI:10.2113/gselements.11.3.171]
40. [40] Hughes J.M, Rakovan J.F.,"Structurally robust, chemically diverse: apatite and apatite supergroup minerals", Elements", 11 (2015) 165-170. [DOI:10.2113/gselements.11.3.165]
41. [41] Tropper P., Manning C.E., Harlov D.E., "Experimental determination of CePO4 and YPO4 solubilities in H2O-NaF at 800°C and 1 GPa: implications for rare earth element transport in high-grade metamorphic fluids. Geofluids", 13 (2013) 372-380. [DOI:10.1111/gfl.12031]
42. [42] Timofeev A., "An experimental study of the solubility and speciation of tantalum in fluoride-bearing aqueous solutions at elevated temperature", Geochimica et Cosmochimica Acta 197 (2017) 294-304. [DOI:10.1016/j.gca.2016.10.027]
43. [43] Putnis A., "Mineral replacement reactions", Reviews in Mineralogy and Geochemistry 70 (2009)87-124. [DOI:10.2138/rmg.2009.70.3]
44. [44] Ruiz-Agudo E., Putnis C.V., Putnis A., "Coupled dissolution and precipitation at mineral-fluid interfaces", Chemical Geology 383 (2014) 132-146. [DOI:10.1016/j.chemgeo.2014.06.007]
45. [45] Ayers, J.C., Watson E.B.,"Solubility of apatite, monazite, zircon, and rutile in supercritical aqueous fluids with implications for subduction zone geochemistry", Philosophical Transactions of the Royal Society of London, Series A: Physical and Engineering Sciences, 335(1991) 365-375. [DOI:10.1098/rsta.1991.0052]
46. [46] Putnis C.V., Ruiz-Agudo E., "The mineral-water interface: where minerals react with the environment", Elements, 9 (2013) 177-182. [DOI:10.2113/gselements.9.3.177]
47. [47] Jonssen E., Harlov D. E., Majka J., Hogdahl K., person-Nilsson K., "Fluorapatite-monazite-allanite relations in the Gr¨angesberg apatite-iron oxide ore district, Bergslagen, Sweden", American Mineralogist 101 (2016) 1769-1782. [DOI:10.2138/am-2016-5655]
48. [48] Nadoll P., Angerer T., Mauk J.L., French D., Walshe J., "The chemistry of hydrothermal magnetite: a review", Ore Geology Review 61 (2014) 1-32. [DOI:10.1016/j.oregeorev.2013.12.013]
49. [49] Dare S.A.S., Barnes S.J., Beaudoin G., Meric J., Boutroy E., Potvin-Doucet C., " Trace elements in magnetite as petrogenetic indicators", Mineralium Deposita 49 (2014) 785-796. [DOI:10.1007/s00126-014-0529-0]
50. [50] Singoyi B., Danyushevsky L., Davidson G.J., Large R., Zaw K., 2006., "Determination of trace elements in magnetites from hydrothermal deposits using the LA-ICP-MS technique", Abstracts of Oral and Poster Presentations from the SEG Conference Society of Economic Geologists (2006) 367-368.
51. [51] Meinert L.D., "Skarn zonation and fluid evolution in the Groundhog Mine, Central mining district, New Mexico", Economic Geology 82 (1987) 523-545. [DOI:10.2113/gsecongeo.82.3.523]
52. [52] Hu H., Lentz D., Li J.W., McCarron T., Zhao X.F., Hall D., "Reequilibration processes in magnetite from iron skarn deposits", Economic Geology 110 (2015) 1-8. [DOI:10.2113/econgeo.110.1.1]
53. [53] Van Baalen M.R., "Titanium mobility in metamorphic systems: a review", Chemical Geology 110 (1993) 233-249. [DOI:10.1016/0009-2541(93)90256-I]
54. [54] Rusk B., Oliver N., Brown A., Lilly R., Jungmann D., "Barren magnetite breccias in the Cloncurry region, Australia: comparisons to IOCG deposits, In: Proceedings of the 10th Biennial Meeting of the the SGA ", (2009) 656-658.
55. [55] Toplis, M.J., Corgne, A., "An experimental study of element partitioning between magnetite, clinopyroxene and iron-bearing silicate liquids with particular emphasis on vanadium", Contributions to Mineralogy and Petrology 144 (2002) 22-37. [DOI:10.1007/s00410-002-0382-5]
56. [56] Ray G., webster I., "Geology and chemistry of the low Ti magnetite-bearing Heff Cu-Au skarn and its associated plutonic rocks, Heffley Lake, south-central British Columbia", Exploration and Mining Geology 16 (2007) 159-186. [DOI:10.2113/gsemg.16.3-4.159]
57. [57] James B.R., "Chromium. In: Stewart, B.A., Howell, T.A. (Eds.), Encyclopedia of Water Science", Marcel Dekker Inc, (2003) 75-79.
58. [58] Loberg B.E.H., Horndahl A.K., "Ferride geochemistry of Swedish Precambrian iron ores", Mineralium Deposita 18 (1983) 487-504. [DOI:10.1007/BF00204493]

بازنشر اطلاعات
Creative Commons License این مقاله تحت شرایط Creative Commons Attribution-NonCommercial 4.0 International License قابل بازنشر است.